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Open Reading Frame(ORF)

DNA (Deoxyribonucleic acid) is the genetic material that contains all the genetic information in a living organisms.
The information is stored as genetic codes using adenine (A), guanine (G), cytosine(C) and thymine (T). During the
transcription process, DNA is transcribed to mRNA. Each of these base pairs will bond with a sugar and phosphate
molecule to form a nucleotide. Three nucleotides that codes for a particular amino acid during translation is called
as a codon. The region of a nucleotide that starts from an initiation codon and ends with a stop codon is called
an Open Reading Frame(ORF). Proteins are formed from ORF. By analyzing the ORF we can predict the possible
amino acids that might be produced during translation. The ORF finder is a program available at NCBI website. It
identifies all ORF or possible protein coding region from six different reading frame.

DNA (Deoxyribonucleic acid) is the genetic material that contains the genetic information for development and helps
in maintaining all the functions in a living organisms.The information is stored as genetic codes using four different
bases. They are adenine (A), guanine (G), cytosine(C) and thymine (T). In two strands of DNA, adenine always pair
with thymine and guanine pair with cytosine. Each of these base pairs will bond with a sugar and phosphate molecule
to form a nucleotide. The base pairing of DNA will result in a ladder shape structure of these strands which is called
a double helix. RNA is differs from DNA only in 1 base pair i.e. in RNA it is uracil (U) instead of thymine(T). mRNA
(messenger RNA) is a type of RNA which is formed from DNA transcription. During the transcription process, DNA is
transcribed to mRNA in the nucleus and moves to the cytoplasm through the nuclear pores. This mRNA is translated
to protein in the cytoplasm with the help of ribosomes. In mMRNA, 3 nucleotides are considered at a time since a set
of 3 nucleaotides (refered to as codon) codes for an amino acid. The region of a nucleotide that starts from an
initiation codon and ends with a stop codon is called an Open Reading Frame(ORF). An initiation codon is the triplet
codon that codes for the first amino acid in the translation process. The translation process will start only with the
initiation codon, ATG which codes for the amino acid methionine. The translation process stops when it comes across
a stop codon. There are three stop codons: TAA ("ochre"), TAG ("amber") and TGA ("opal" or "umber"). Any of
these codons can stop the translation. Genetic codon can form 64 triplets(43) from the 4 nucleotides that codes for
amino acids. Protein is formed from the ORF.

How to find ORF

1. Consider a hypothetical sequence:
CGCTACGTCTTACGCTGGAGCTCTCATGGATCGGTTCGGTAGGGCTCGATCACATCGCTAGCCAT

2. Divide the sequence into 6 different reading frames(+1, +2, +3, -1, -2 and -3). The first reading frame is obtained
by considering the sequence in words of 3.

FRAME +1: CGC TAC GTC TTA CGC TGG AGC TCT CAT GGA TCG GTT CGG TAG GGC TCG ATC ACA TCG CTA
GCC AT

The second reading frame is formed after leaving the first nucleotide and then grouping the sequence into words of
3 nucleotides

FRAME +2: C GCT ACG TCT TAC GCT GGA GCT CTC ATG GAT CGG TTC GGT AGG GCT CGA TCA CAT CGC
TAGCCAT

The third reading frame is formed after leaving the first 2 nucleotides and then grouping the sequence into words of
3 nucleotides

FRAME +3: CG CTA CGT CTT ACG CTG GAG CTC TCA TGG ATC GGT TCG GTA GGG CTC GAT CAC ATC GCT
AGC CAT

The other 3 reading frames can be found only after finding the reverse complement.

Complement : GCGATGCAGAATGCGACCTCGAGAGTACCTAGCCAAGCCATCCCGAGCTAGTGTAGCGATCGGTA
Reverse

complement: ATGGCTAGCGATGTGATCGAGCCCTACCGAACCGATCCATGAGAGCTCCAGCGTAAGACGTAGCG
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Now same process as that of +1, +2 and +3 strands is repeated for -1, -2 and -3 strands with reverse complement
sequence

FRAME -1: ATG GCT AGC GAT GTG ATC GAG CCC TAC CGA ACC GAT CCA TGA GAG CTC CAG CGT AAG ACG
TAG CG

FRAME -2: A TGG CTA GCG ATG TGA TCG AGC CCT ACC GAA CCG ATC CAT GAG AGC TCC AGC GTA AGA
CGT AGC G

FRAME -3: AT GGC TAG CGA TGT GAT CGA GCC CTA CCG AAC CGA TCC ATG AGA GCT CCA GCG TAA GAC
GTA GCG

3. Now mark the start codon and stop codons in the reading frames

FRAME +1: CGC TAC GTC TTA CGC TGG AGC TCT CAT GGA TCG GTT CGG [l GGC TCG ATC ACA TCG CTA
GCC AT

FRAME +2: C GCT ACG TCT TAC GCT GGA GCT CTC ATG GAT CGG TTC GGT AGG GCT CGA TCA CAT
cGCHRG ccaT

FRAME +3: CG CTA CGT CTT ACG CTG GAG CTC TCA TGG ATC GGT TCG GTA GGG CTC GAT CAC ATC GCT
AGC CAT

FRAME -1: ATG GCT AGC GAT GTG ATC GAG CCC TAC CGA ACC GAT CCA B GAG CTC CAG CGT AAG
ACG B cG

FRAME -2: A TGG CTA GCG ATG i@ TCG AGC CCT ACC GAA CCG ATC CAT GAG AGC TCC AGC GTA AGA
CGT AGC G

FRAME -3: AT GGC [l CGA TGT GAT CGA GCC CTA CCG AAC CGA TCC ATG AGA GCT CCA GCG [l GAC
GTA GCG

4. Identify the open reading frame (ORF) - sequence stretch begining with a start codon and ending in a stop codon.

FRAME +2: ATG GAT CGG TTC GGT AGG GCT CGA TCA CAT cGc i@

FRAME -1: ATG GCT AGC GAT GTG ATC GAG CCC TAC CGA ACC GAT ccA [GH
FRAME -3: JATG AGA GCT CCA GCG [l

5. Based on the amino acid table the peptide sequence is found

Second Nucleotide
u C A G
code Aming code Aming code Amine code Aming
acid aryd acid acid

uuu phe ucu TAT tvr uGu cvs u

U uuc ucc ser UAC uUGcC C

UUA | lew | UCA STOP A

uuG UCcG STOP | UGG tIp G

cuug cCcu CAU his CGu u
% C cucC leu CCC pro CAA CGC arg C =
Tg CUA CCA CAC gln CGA A =
E CUG CCG CAG CGoG G Z
z AUU ACU AAU | asn | AGU | ser U o,
= A ATIC ile ACC thr AAC AGC C g
2 ATTA ACA AAA lys AGA arg A &

AUG met ACG AAG AGG G

GuUu GCU GAU asp GGuU u

G GuC val GCC GAC GGC gly C

GUA GCA ala GAA glu GGA A

GUG GCG GAG GGG G

Figure 1: Amino Acid Table
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FRAME +2: ATG GAT CGG TTC GGT AGG GCT CGA TCA CAT cGC @
met asp arg phe gly arg ala arg ser his arg stop

FRAME -1: ATG GCT AGC GAT GTG ATC GAG CCC TAC CGA ACC GAT ccA i
met ala ser asp val ile glu pro tyr arg thr asp pro stop

FRAME -3: ATG AGA GCT CCA GCG [l
met arg ala pro ala stop

By analyzing the ORF we can predict the possible amino acids that are producing during the translation process. The
prediction of the correct ORF from a newly sequenced gene is an important step. Finding ORF helps to design the
primers which are required for experiments like PCR, sequencing etc.

ORF Finder:

The ORF finder is a program available at NCBI website. It identifies the all open reading frames or the possible
protein coding region in sequence. It shows 6 horizontal bars corresponding to one of the possible reading frame.
In each direction of the DNA there would be 3 possible reading frames. So total 6 possible reading frame (6 horizontal
bars) would be there for every DNA sequence. The 6 possible reading frames are +1, +2, +3 and -1, -2 and -3 in
the reverse strand. The resultant amino acids can be saved and search against various protein databases using blast
for finding similar sequences or amino acids. The result displays the possible protein sequence and the length of the
open reading frame etc.
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Abstract:

Despite the rapidly increasing number of sequenced anegeesiced genomes, many issues regarding the computational
assembly of large-scale sequencing data have remain WedsdComputational assembly is crucial in large genome
projects as well for the evolving high-throughput techigids and plays an important role in processing the inforomati
generated by these methods. Here, we provide a comprebengwiew of the current publicly available sequence as-
sembly programs. We describe the basic principles of coatipmial assembly along with the main concerns, such as
repetitive sequences in genomic DNA, highly expressed gyand alternative transcripts in EST sequences. We sum-
marize existing comparisons of different assemblers andige a detailed descriptions and directions for download o
assembly programs dtt t p: / / genone. ku. dk/ r esour ces/ assenbl y/ met hods. ht m .

Keywords: Assembly methods, EST, shotgun, genomes, high-througieputencing.
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1 Introduction

Genome sequencing is a discipline that has undergone taousrdevelopment in the past. With the introduction of
the different new massively parallel sequencing techrie®the field will go through further transformations as new
challenges arise. Today 567 bacterial genomes with up ®riillion base pairsRlesiocystis pacifica SIR}have been
sequenced and submitted to NCBI (as of October 9, 2008). ditiad several eukaryote genomes with approximately
three billion base pairs have been sequenced and asserhbled/(/ ww. ensenbl . or g), and many other sequencing
projects are under wayi(t p: / / ww. genonesonl i ne. or g) [1].

The experimental technique used in most de novo sequencajects of higher organisms, DNA chain termination,
was developed three decades ago and remains, except forhglhar levels of automation, basically the same. The
introduction of new massively parallel sequencing methbdaever, opens completely new fields of application. fnort

after the introduction of sequencing methods, some of tise féports of the determination and comparison of cDNA
sequences were published. Late in the 1970s the bactegephphiX174 and Lambda [2, 3, 4] were among the first
genomes to be completed together with the human mitocham§sj 6].

In the following decade the shotgun sequencing strategyintesduced [7, 8], and during the subsequent years it was
extended by applying it to larger and larger DNA sequenceserl in plasmids (a few kilobases (kb)), cosmids (40 kb)
[9], artificial chromosomes cloned in bacteria (BAC — Baietiehrtificial Chromosome) and yeast (YAC — Yeast Artificial
Chromosome), with inserts of 100 to 500 kb [10]. The assemhblyhole genome shotgun sequencing data was deemed to
be futile until the successful WGS assembly of the 1.8Mb gaesidaemophilus influenzae 1994 [11]. An approximate
time line of the major breakthroughs and milestones in secjag is shown on Fig. 1.

[Figure 1]

“High throughput” sequencing (HTS) of cDNA was initiated 1991 by Adams [12], who also introduced the term
"Expressed Sequence Tag" (EST) to refer to this new typemqfesece information. Collections of ESTs have given a first
good approximation of the diversity of all protein codinghgs in a tissue [13]. During the years ESTs have become an
important tool with many applications, mostly in relatiangene analysis and gene discovery [14, 15, 16, 17, 18, 19, 20,
21,22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36387,

The amount of data generated by the different sequencinggtsas overwhelming. For example, sequencing of the
human genome produced 23 and 27 billion bases of raw shoggueaces in the International Human Genome Sequenc-
ing Consortium and the Celera projects, respectively [BD, However, the vast amount of fragments can not readily be
concatenated to a final sequence. Only by using computegsdtbes possible to carry out the assembly of the pieces, but
the outcome as well as the reliability of the result for a gityge of data depends on the underlying strategy implerdente
in the computer program. Some strategies might be moredsiateone type of data than others. Also, the computational
resources of some methods might not scale well with the nuofiEequences in the data set. Though the experimental
techniques have essentially driven the computationalchsfesequence assembly, the computational aspect is &till 0
utmost importance since any meaningful assembly needsdorbputer assisted.

One of the first assemblers introduced by Staden in 1980 [4§]axcomputer program developed to store and manipulate
DNA gel reading data obtained from the shotgun method of DEuencing. During the next decade several other
programs were presented, among them SEQAID [42], CAP [48RA&P [44], and the TIGR assembler, which was
used to assemble the genomeHafemophilus influenzgé1]. In order to assemble larger and more complex eukaryoti
genomes, new assemblers have been designed and implemf&mieog them the Celera Assembler (now part of AMOS)
[45, 46] and GigAssembler [39], both applied to human gendata sets; the JAZZ-assembler, which was applied to both
the genome oTakifugu rubripegthe pufferfish) [47] andCiona intestinali§48]; and the ARACHNE [49] and Phusion
[50] assemblers, both applied to the mouse genome.

Several specific efforts have been undertaken in the coot&8T assembly, and several tools are available. Among them
are StackPack [51, 52], TIGR TGICL [53], and geneDistille4]. Some of the tools deal with splice variants [55] or other
problems such as chimerism (and includes alternativeespliciants detection) [54, 56, 57]. Approaches to incorfgra
rather than remove repetitive sequences are discusse8,if9560].

Along with the increasing number of completed genomesy&fire also made in developing computational methods for
comparing genomes. These include TIGRs MUMmer [61, 62], NBCAN, GENEWISE, GENOMESCAN [63, 64],
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BLAT [65], and AVID [66, 67] used for alignment and compairisaf whole genomes, and FORRepeats which is used to
detect repeats on entire chromosomes and between gendshes [6

The massive effort to sequence the human genome producetidréift version in 2001 [39], and did, as a draft sequence,
contain numerous gaps. It took another 3 years of sequeacid@ssembly before the finished version was presented
(which still contains more than 300 gaps) [69].

2 Sequencing approaches

As mentioned the choice of assembly strategy depends orthescing method, and the choice of sequencing method
may also depend on the organism that is being sequencedeslfisat can affect the final assembly (other than the
obvious quality of sequence data) are the size of the insenisther the sequencing was uni- or bi-directional, thealiyp
construction, the cloning vector, the selection of clorebé sequenced, and the availability of additional inforarat
(consensus genome, ESTs, known verified genes, gene maps, et

Approaches for the de novo sequencing of genomes from highanisms using Sanger sequencing [70] will be described
first. In the context of genome resequencing we take a clos&rdn the new massively parallel sequencing technologies
and their obstacles, though many of the concerns are oy@nigeg.sequencing quality assessment.

2.1 Basic sequencing procedure

The basic procedure in sequencing has been to isolate geiw or RNA (reverse transcribed into cDNA), and clone
it into vectors €g.plasmids, BACs) capable of stable propagation in suitabt bells such aEscherichia colisee Fig.

2 for a schematic illustration of a sequencing vector. SEva@oning systems with insert sizes varying from hundreds o
base pairs to megabases have been developed. The idedllostanefor genomic sequencing has the following features.

1. The clones are highly redundant, covering the entire genmany times (typically 6-10).
2. The clone coverage is random and not biased towards arsigaiecific regions of the genome.

3. The clones are stable, not subject to recombination egamization during the propagation process [71].

It should be noted that one of the major improvements of tkemassively parallel sequencing technologies is that they
do not rely on vector cloning prior to sequencing, and theceons listed here are therefore not directly applicabladsé
technologies.

[Figure 2]

After propagation, the clones are selected and the sequgeiscperformed. An essential feature in sequencing is the
attachment of quality values to the raw sequences. Thetgualiues indicate the likelihood of each base call being
correct. In the assembly stage the quality values will helgistinguish true DNA polymorphisms from sequencing esror
and match end sequences of low quality [72, 73, 74, 75].

In genomic shotgun sequencing, which typically uses a siimglividual DNA source, sequences sharing less than 98%
identity are usually assumed to come from different regafresgenome (including different repetitive elements) [16]
contrast, EST data is usually derived from a variety of sesirepresenting the spectrum of polymorphisms in the algin
samples. These will usually include a number of erroneolygparphism which are caused by sequencing errors inherent
in single pass sequencing, a relatively high rate of insestand deletions, contamination by vector and linker secgse
and the non-random distribution of sequence start siteBgo(@T)-primed libraries. Therefore, the degree of idigrin
overlapping sequences from the same gene will often be lIoweST projects than in genomic sequencing projects. In
addition, the patterns of overlapping sequences causetdipative spliceforms are different from those observed i
genomic shotgun project [76].
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The major tool to gather sequence information was the metitoatiuced by Fred Sanger in the second half of the 70'ties.
It uses dideoxynucleotide triphosphates (ddNTPs) as DN#rcterminators [77, 70]. The classical Sanger approach is
carried out in four independent DNA polymerase reactionssitBes the DNA template and deoxynucleotides (ANTPSs)
a reaction mix contains either ddATP, ddCTP, ddTTP or dd@&&h reaction results in DNA fragments of different
length terminating with the respective ddNTP. Electropgisas of the fluorescence- or radio labeled fragments allbes t
recovery of the template sequence. Later, the use of dyeirtators made it possible to perform sequencing in a single
reaction rather than four — the basic principle however ieaththe same. While the classical Sanger approach requires
separate synthesis and detection steps, High Throughguée8eing (HTS) technologies employ sequencing-by-sighe
and sequencing-by-ligation approaches, allowing for #immeous synthesis and detection.

2.2 Shotgun sequencing

Two approaches for genome shotgun sequencing can be distiegl: whole-genome shotgun (WGS) sequencing and
hierarchical shotgun sequencing.

2.2.1 Whole Genome Shotgun

Sequencing using the whole genome shotgun approach basitdns that the genome is randomly broken into pieces
and cloned into a sequencing vector. The inserts are substyprocessed to generate sequences of bases (referred to
as reads). See illustration on Fig. 3a. During the mid 19@0srsl groups recognized that sequence information from
both ends of relatively long inserts dramatically improtes efficiency of sequence assembly [9, 78, 79, 80, 81, 82].
In contrast to single sequence reads from one end of the whalgnes pairs of sequence reads from both ends have
known spacing and orientation. Exact knowledge of the lenfthe insert is not required to utilize the advantages df en
sequencing in assembly [83], but good estimates of clorgttenill aid the assembly immensely.

[ Figure 3]

2.2.2 Hierarchical shotgun sequencing

The ’'Hierarchical shotgun sequencing’ (also referred toreep-based’, 'BAC-based’ or 'clone-by-clone’) approach i
volves generating and organizing a set of large insert sl¢typically 100-200 kb each) covering the genome (a “mihima
tiling path”), followed by separate shotgun sequencingacheclone. For illustration see Fig. 3. Itis possible tolelith

a tiling path of overlapping BAC-clones using only BAC fingenting technologies [84]. However, knowledge of unique
genome markersef). ESTs or sequence-tagged sites (STS)) and their locatidmeigénome map is of great help for
organizing the BAC clones in the correct order. In hierarahshotgun sequencing the sequence information is local,
therefore the risk of long-range and short-range misasigesiteduced.

2.2.3 Mixed strategy sequencing

A strategy that can be used on large complex genomes is thedhsirategy sequencing’. The technique utilizes both
hierarchical and whole-genome shotgun. The method comlairght (x1) BAC clone coverage of the genome, with
whole genome shotgun sequencing . The BAC clones act as@flmsiework for WGS sequence assembly. The method
was successfully applied to rat genome [85].

2.2.4 Reduced Representation Sequencing

A variant of WGS is “reduced representation sequencing"§RRvhere one selectively chooses subsets of the genome
to avoid sequencing the (often much) larger regions thahatef interest. In [86], SNPs were discovered by mixing
DNA from many individuals, preparing a library of appropéely sized restriction fragments, and randomly sequencing
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clones. Here, the choice of the restriction fragments &ffely selects only a small subset of the human genome. Sever
approaches to RRS have been employed for plant genomes 88898 Methyl-filtration (MF) sequences uses the
endogenous restriction-modification systenkotolito eliminate methylated DNA inserts, the RescueMu (RM) apph
focuses on the gene-rich regions which are rich in mutadémsposons, and High-Cot filtration avoids repetitive and lo
copy sequences due to differences in the relative rates &f 2Nassociation. Most of the Maize and Sorghum genomes
have been sequenced using MF.

Many of the applications of the new high throughput sequamplatforms are based on various RSS strategies (see.2.2.6)
This includes electrophoretic size separation to enrictsfoall RNA molecules€g.[90, 91]); reduced representation
bisulphite sequencing for genome wide methylation analjgs]; flow sorting of derivative translocation chromos@me
for breakpoint mapping [93]; enrichment of DNA-fragmentsibd to specific proteins by chromatin immunoprecipitation
of fixed, sheared DNA, for identification of transcriptiorcfar binding sites (CHiP-Seq) [94, 95, 96]; enrichment of
specific parts of the genome by multiplex PCR-amplificat@n [or by hybridization to custom made arrays [97, 34,

for SNP discovery [99] and in situ exon capture [100].

2.2.5 EST sequencing

Expressed Sequence Tags (ESTs) are sequences repregem@sgwhich can originate from specific tissues [12]. In
EST-sequencing a single automated sequencing from onetbrelnols of a cDNA-inserts is performed. This single-
pass approach is the major reason EST-sequencing is cestiadf[101]. For additional information, seg. [102] and
references therein.

In most cases EST sequencing projects are aimed at estaplartial sequences of transcribed genes rather than full
length cDNA sequences. However, this approach featureg spmcial challenges such as common sequence motifs,
alternative transcripts and paralogous genes are chalighgt potentially impact the assembly quality. Thesesssuill

be discussed further in section 4.4.3.

2.2.6 Massively parallel sequencing

Recently, a number of new sequencing technologies havegerhefhe development was initiated by 454 sequencing and
followed by Solexa sequencing and others [103, 104, 105,1@[. The common feature of all these technologies is that
they are massively parallgk. they generate a large number of different sequence readsiimgke run. The generated
small reads are usually aligned to a reference genome, atiefanalyzed, see Fig. 3d for an illustration.

The methods generally use one variant or another of fixingynsaguence fragments on a substrate, cyclically adding
different bases with some — technology-specific — luminalrahbteristics, and recording an image at each cycle. Image
analysis is used to recover the all sequences at once. Sangef all immobilized fragments thus proceeds in parallel

Compared to traditional sequencing a large amount of seguéaita is generated at a drastically reduced cost per base.
The most important disadvantage of high throughput sedngns the significantly reduced read length, which limits
their application in de novo sequencing of complex genoregsl(ie to repeats), at least using simple shotgun strategies.
However, these new platforms have many uses in genome seiqg, especially if it is possible to align the fragments
to an existing good quality reference genome.

Due to the amount of raw sequence data, high throughput seipgeis valuable in areas such as SNP finding. In EST
sequencing, HTS technologies might enable a researcheake atcurate digital expression profiles, even includimg lo
abundance transcripts, and help detecting alternativerspdepending on the platform chosen).

One of the key technologies that gave rise to the era of HT&sgguencing, was introduced in 1998 [103]. This
sequencing-by-synthesis method is at the very heart of G& $ylstems by 454 Life Sciences [104]. The detection
is based on pyrophosphates (PPi) released during the pagmeeaction. Sulfurylase converts PPi to ATP which is
subsequently consumed by luciferase to emit light in thibkispectrum. In GS FLX systems, a library of DNA templates
is immobilized on DNA capture beads, amplified using emul$d€R (emPCR) and loaded onto proprietary titer plates
with several hundreds of thousands reaction wells. Duringna the four nucleotides are flowed sequentially over the
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plates. The luciferase reaction triggered by nucleotidesgementary to DNA templates is recorded by a CCD camera.
A washing step is necessary to allow the next detection Step GS FLX currently allows read lengths of several hundred
bases. According to the manufacturer a single instrumentith two high-density plates generates information fanath

20 million base pairs.

A competing technology, Solexa, now sold by Hlumihat(p: // www. i | | umi na. con), uses optically transparent surfaces
to immobilize fragmented and adapter-tagged DNA. Eacltlaéid fragment is subsequently amplified000 fold by
repeated steps of bridge amplification. The resulting dlohesters are then sequenced using reversible terminaitrs
removable fluorescent dyes. With approximately 30-40 bg@oleads are significantly shorter compared to GS FLX.
However, close to 50 million clones per flow cell can be segediin parallel, resulting in presently >1.5 Gb of sequenced
DNA in a single sequencing run. This amount can be double@byencing the other end of each fragment (paired-end).
Improvementin chemistry may further increase the readtlengnd hence push the total amount of sequenced DNA well
beyond the size of a human diploid genome.

A third synthesis-based technology, tSMS (true Single Male Sequencing), is currently distributed by Heliclist (:

[ I'ww. hel i coshi 0. com). No DNA amplification is required for this approach. Instefragmented single stranded
DNA molecules are directly immobilized on a solid surfacenifar to Solexa, tSMS works with nucleotides that carry a
removable, laser light-detectable fluorescent. At the nrirtiee system is able to sequence reads with lengths up to 55
bases at a speed of 25 to 90 million usable bases per hour.

SOLID, a system now sold by Applied Biosystenhst(p: / / www. appl i edbi osyst ens. com), is a technology that uses

a sequencing-by-ligation approach. An adapter-taggedrijiof short DNA fragments is amplified with emPCR, immo-
bilized on capture beads and then deposited onto high4glegiass arrays. The SOLID sequencing-by-ligation protoco
uses four by four sets of 8-mer probes. In each set only twedhdisiorescently labeled, are specific. The interrogation o
sequences is done in four phases. If a probe has specificallydto the free template in the first phase, say at position
1 and 2, it is enzymatically ligated to the curreheBd at position 0. After the detection step 3 nucleotidefefirobe
along with the fluorescence label are cleaved. The nextidigatep interrogates 6 and 7 and so forth. After the first
phase, the ligated sequence is removed, and another setaxf & called. So in the second phase bases 2 and 3 are read,
in the third 3 and 4 and so forth. The advantage of the SOLifesyss that the double base reading leads to an increased
accuracy. Currently SOLID produces read lengths of abott@Bp and a total of 9 Gb per single run, with read length
expected to become longer in the future.

In the future, other technologies may become availabld) agdhe use of solid state nanopores for sequencing of single
DNA molecules [108]. We refer to [109] for an overview, in whiseveral interesting ideas how this approach could be
implemented in practice are presented.

3 Mapping of short high-throughput sequencer reads

Compared to de novo assembly, the mapping of resequencesl tea template genome is a computationally easier
problem. Still, efficient mapping tools are crucial (seetieec4.7), and several tools for mapping of short reads are
available. Most of the toolde. MAQ, SOAP, SHRIMP or Eland (proprietary), use seeding tégives that gain their
speed from precomputed hash look-up tables [110, 111, Tyically, seeds of fixed length allow for not more than
one or two mismatches. In addition, the capability to detes¢rtions and deletions, as they frequently occur in 454
sequences (see section 4.4.4) is very limited,and mostrgmgcan only detect indels in subsequent alignment runs.
For short sequences it would be helpful, but computatigrmatbre expensive, to incorporate indels right from the start
Current mapping tools have different additional featurBse program MAQgg, additionally supports paired-end read
matching — helpful to deal with paired-end reads produsgthy the GS FLX and other high throughput platforms.

4 Computational assembly

Computational assembly is the only way to efficiently asdenskequenced fragments of DNA. However, a sufficient
amount of high quality sequences are required. The assgmiyams should be able to handle large data sets effgctivel
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and avoid misassemblies in the presence of large repatitidaplicated regions and redundant sequences. To acampli
this, effective algorithms to handle large input data setk the use of minimal computer time and memory are needed.

One of the primary difficulties in computational genome ag3lg is to develop an algorithmic approach capable of de-
tecting stretches of repetitive DNA without causing misaisklies. Repetitive sequences complicate assembly asefitf
pieces of sequence can share the same repeat sequencatimggirom different genomic locations. Since the pieces ar
put together by searching for matching overlapping nudaest repeats can be put together erroneously. Typicailty, f
shotgun data, repetitive sequences are revealed by dustetaining more overlapping reads than would be expegted b
chance, illustrated on Fig. 4.

[ Figure 4]

In EST datasets the main difficulty is to develop an algorithapproach that, in addition to efficient assembly, can kand
highly expressed genes, paralogous genes, alternatigefgpins and chimerism in the dataset.

The theoretical background for genome assembly lies in coenscience, and an insight into the mathematical and
theoretical background can be found in [113] and refereticagin.

Although pyrosequencing with a whole-genome shotgun ardnas been successfully applied to bacterial genomes
[104], the construction of high-quality assemblies witlghthroughput sequencing data is still a non-trivial peobl
even for short genomes. At present, no approach has beeogewo directly assemble large animal or plant genomes
directly from short sequences obtained using HTS. As desdrbelow the SHort Read Assembly Protocol (SHRAP)
[114], however, comprises a protocol for high-throughpwrsread sequencing that differs in two respects from aks
hierarchical sequencing approaches. This protocol howexpects read lengths much longer (200 nucleotides) than
those produced by SOLID or Solexa. The assembly methodaolggsed on the Euler engine introduced in 2004 [60].
The Euler-SR assembler, specifically designed to asserhble ieads, uses an updated version of the Euler engine to
reduce memory requirements. The results for real Solexasrdmwever, were less convincing [115] due to the poorly
understood error model and highly variable error ratessscdifferent machines and run times.

4.1 Basic principles of Assembly

For the majority of traditional assembly programs the basiteme is the same, namely the overlap-layout-consensus
approach. Essentially it consists of the following steps [416]:

e Sequence and quality data are read and the reads are cleaned.

e Overlaps are detected between reads. False overlaps;atgpleads, chimeric reads and reads with self-matches
(including repetitive sequences) are also identified aftalé for further treatment.

e The reads are grouped to form a contig layout of the finishgdesgce.

e A multiple sequence alignment of the reads is performed gatmhsensus sequence is constructed for each contig
layout (often along with a computed quality value for eacbd)a

e Possible sites of misassembly are identified by combininguakinspection with quality value validation.

Prior to the assembly, the electropherogram (for Sangeresaing, images for massively parallel sequencers) forengi
sequence is interpreted as a sequence of bases (a readssotticdied quality values, these values reflect the log-odds
score of the bases being correct. The basecaller PHRED [8 Dflen used, however alternatives exex, the CATS
basecaller [118].

The reads can then be screened for any contaminant DNA sugkcagrichia coli cloning or sequencing vector. Low
quality regions can be identified and removed [45]. Baseityuallues can be used in computation of significant overlaps
and in construction of the multiple alignments [44, 116]eTipeline for a typical sequence assembly is sketched on Fig
5.
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[ Figure 5]

For high-throughput sequencing data, the basic propasitio SHRAP is to sample clones from the genome at high
coverage, while sequencing reads from these clones at legrage. SHRAP starts off with assembling the reads greedily
to small local assemblies and subsequently to contigs dnaace. It proceeds by ordering the clones in a “clone graph”
and constructing “clone contigs”, which are then asseminiéddpendently. Computer simulations of the procedure show
that the approach can reach a quality comparable to thentlassemblies of single human chromosomes and fruit fly
genomes using reads of 200nt with an error rate of not more1f& These are constraints that are too strict for short
(Solexa or SOLID) readsx{ 40bp) and because of higher error rates challenging for real 48ds[119]. Furthermore,
for mammalian genomes the use of a hierarchical sequentcatggy might be somewhat cumbersome.

However, the use of templates might bail Solexa and SOLibsusa: In a recent study, de novo assemblies of chloroplast
genomes# 120 kb) were improved by aligning preassembled contigsfeveace genomes [120]. After de-Bruijn graph
assembly of reads [121], small contigs were aligned to glasdated chloroplast genomes. Between 67% and 98% of
the contigs could be aligned to such templates. If alignrfegletd, sequences were scanned for similarity using BLASTN
[122]. The authors reported that successful BLASTN matdppegally contained> 100 bp insertions relative to the
reference genome. In the end, however, their assemblies egtimated to be 88—94% complete. Yet, the assembly of
mammalian genomes or genomes without good reference seepiseems to be a considerably more difficult task. The
successful de novo assembly of Chloroplasts genomes withetils has been shown earlier [123].

454, SOLID, Solexa technologies allow convenient genenatif mate-pair/paired-end sequendesthe ability to se-
guence both ends of each DNA fragment. However, in an asgamlslg a hybrid dataset of real 454 reads and simulated
mate-pair data, about 96% of the mate-pairs did not cort&ibdditional information and hence did not improve the
assembly [115]. Likewise, in a hybrid dataset of 454 reads%snger reads the vast majority of long sequences did not
improve the assembly substantially, measured by N50 cai#&g Hence, the authors concluded that hybrid protocols
should be reviewed critically. Despite those simulatiosutts, the latter method has already been shown to work quite
well in practice [124], and one area where mate-pair/pagmedisequencing should improve the analysis dramaticaflbyri

the detection of breakpoints related to structural regearentseg.deletions, duplications, inversions and translocations
[125].

4.2 General Assembler differences

When different assemblers try to piece the DNA puzzle togrethey essentially work from the same input, but the
assemblers differ in the way they utilize the sequence im&tion, and in the way this is combined with additional
information. In general the differences fall in the followgi categories.

e Overlaps: A lot of different methods are used to find potential overlbpveen sequences. Some are based on
BLAST (eg.geneDistiller [54, 56]), while other assemblers use variother methods to find similarities between
reads.

e Additional information: Depending on how the sequence reads are produced someadditformation might
be available. This information might consist of read pafoimation, BAC clone information, base quality infor-
mation, etc. Some assemblers use this data to impose addistvucture on the assembly of the sequenegs (
GigAssembler [39]).

e Short read assembly:De novo assembly of the micro reads generated from next geéoieisequencing platforms
is still challenging. While assemblers have been develapeidapplied to assemble bacterial genomes successfully
[115, 126], on larger genomes the assembly is performed Ippmg the micro reads to reference genomes. The
major next generation sequencing platforms all have lgbftware to handle this tasky.GS Reference mapper,
Gerald for Solexa. In SOLID systems the mapping tool “magséaonverts reference sequences into color space
and perform the mapping in color space.

A somewhat related issue is how the sequences are cleanedtahtinant sequenceie(vector sequences, repeat se-
guencesegtc). While this can essentially be considered separately adependently from the assembly itself, some
assemblers incorporate cleaning in the way they procesg#us €g.[49]).
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These basic ideas will be discussed further in the follovéxg, and an overview on how the different assemblers applie
these ideas can be found in the supplemental matétiap(// genone. ku. dk/ r esour ces/ assenbl y/ net hods. ht m ).

4.3 Overlap identification and alignment

In a whole-genome context, trillions of overlaps betweesdseare examined [45]. The majority of assemblers uses
alignment algorithms which are general modifications ofhmds first introduced by Needleman and Wunsch in 1970
[127], Smith and Waterman in 1981 [128] and Gotoh in 1982129

Initial overlap detection is often performed by finding eixatentical subsequences (often called words, k-words or k-
mers) between reads, prior to making the actual alignmentsese identical subsequences are used to find pairs of
potentially overlapping sequences, which can then be efign each other in order to check if they represent a true
overlap. The size of the subsequences varies from methoeétoeh, and is dynamic in some assemblers. Furthermore,
the identical subsequences are grouped and used in diffeagis depending on the assembler.

For almost all assemblers, a modified Smith-Waterman [1&f)rethm is used to align candidate overlapping reads.
The basic idea in the alignment algorithms is to use dynamagnamming to construct a matrix containing scores of
all subsequences, which is then analyzed to find the “optialajnment. Dynamic programming simply means that
the alignment is calculated as extensions to already alignbsequences. The assembly programs differ in their exact
implementation of this algorithm, as (nearly) all of thene wsheuristic approach to decrease the computational load,
thereby increasing speedd[116]). In the assembly of ESTs a clustering step is used eogthe input sequences
sharing significant regions of near identity together [1¥4 Fig. 6, an assembled cluster is shown, the example ia take
from the Sino-Danish pig EST sequencing project [131].

[ Figure 6]

4.3.1 Multiple alignments and the consensus sequence

While the alignment of two sequences is usually straightéod, aligning more than two is not so simple. The standard
Smith-Waterman algorithm can easily be extended to the ¢askigning many sequences by constructing a “multi-
dimensional matrix”. However, the number of calculatioise rexponentially with the number of sequences. This sets
severe practical limits of the number of sequences thatial#esto align, and therefore finding the true sequence from a
number of overlapping reads becomes difficult.

Precisely how the different assemblers generate a mu#tiigement and consensus sequence is only vaguely desanibed
the literature, but a common approach is to use a heuris@dyralgorithm (see for example [132]). The greedy algorith
typically performs pairwise alignment between overlagpeads, from which a multiple alignment s build up iteratyy

ie. adding one sequence at a time, but with this approach theregsiarantee that such a multiple alignment is correct.

After the multiple alignment has been constructed the amisesequence is found. This would typically be the sequence
generated by taking the most common base at each positibe @mlignment, however other methods exist. For instance
geneDistiller [54], where ungapped alignments of readerfopmed (thus simplifying the multiple alignment). Theeo
sensus sequence is constructed by splitting the multigerakent in 12-mer words and analyzing the relative freqiesnc

of these, where the presence of alternative transcriptstected through the frequencies of the 12-mers (and disglay
as stretches of "alternate consensus’).

The assumption is that the final consensus sequence canegpthe original genomic sequence where the sequenced
fragment originate.

10



WNWAV RBEHERA. | N
4.3.2 Eulerian Fragment Assembly

In assemblers aimed at short read assendrfyJOLID reads) an approach based on mathematical graph tieeoftgn
used, namely the Eulerian fragment assembly method. ThexiBnlfragment assembly avoids the costly computation of
pairwise alignments between reads [133]. D& Bruijn graphof a genome has as its vertices all distiket 1 tuples
that occur within the sequence (whdeés the word length that is used). A directed edge is insertdd/dens andt if
there is & tuple (uz, Uy, ..., U1, Ux) in the genome such that= (ug, Uz, ..., Ux_1) and({t = uy,...,ux_1,Us), ie., if sand

t appear shifted by single nucleotide. A sketch of a graphtcocison procedure is shown on Fig. 7. In practice one uses
the k-tuples appearing in the collection of the sequence readsaamlue ofk between 6 and 9 or 10. In the error-free
case, the genomic sequence can be read off directly as andaytath through the De Bruijn graph (with repeats forming
“tangles”). In real, error-prone data underrepresentadgkes,ie. k-tuples that appear less frequently than expected from
the coverage rate, indicate sequencing errors and can bieedmi

[ Figure 7]

4.4 Data reliability
4.4.1 Preprocessing and cleaning

A critical aspect of any large-scale sequencing effort ésgloduction of high quality data. To obtain this preprocess
is applied to the reads. For Sanger sequencing this inclodss-calling, filtering of low quality reads, short length
reads (typically less than 100 bp), identification of seaeefeatures such as linker restriction sites, cloning vegto
polyadenylation tails, library tags, polyadenylationrgifs [134] and other contaminants like bacterial sequejiGs.

There are different computational programs available teat¢hese contaminations. Most of the existing prograred us
for processing solely focus on a single step. While PHRED/[Hdeals with base-calling, cross_match [44] aims to
identify and mask vector sequences in reads. Preprocesainglso be done using other programs such as LUCY [135],
a sequence trimming script like SeqClean [136], or ESTpi&d].

In the Solexa system, the module for sequence alignmentald;applies some filters to remove low quality base calling
before the real mapping starts. As it is based on opticalctiete of ultra-high dense sequence clusters on surface,
chastity and purity of optical signals are crucial for acteg the quality. Distance between clusters is also taken in
consideration. Thresholds for these features can be cusdrim the program (see lllumina in-house documentation fo
details). Other next-generation sequencing systems gndjfferent measures according to their methods.

4.4.2 Repeats

In mammalian genomes the repetitive content can be as hi§%s The repeated fraction includes interspersed re-
peats derived from transposable elements, and long gerregimns that have been duplicated in tandem, palindromic
or dispersed fashiorg.ribosomal RNA genes, centromeres, heterochromatin anatr@isposons. Such features com-
plicate the assembly into a correct finished genome sequamtdave a great influence on the design of assemblers.
Computationally repeats are typically handled as follows:

e Comparing: By comparing reads to known repeated regions in other gesopatential repetitive sequences can
be separated (and typically discarded) from the assembly.

e Masking: Regions which have a high depth, that is regions where mausrehare the same sequence, are marked
as repeats (illustrated on Fig. 4). Usually such regionslesearded by the assembler, and are not incorporated in
the assemblygg.by the method presented in [137].

A standard program for masking repeats is RepeatMaske}.[lt3@arches through curated repeat databageRépbase
[139]) using the alignment program cross_match [44] to liferand mask repeats. The speed of cross_match can be
increased by using the software wrapper MaskerAid [140].

11
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4.4.3 Expressed Sequence Tags

Due to the way that the EST sequences are generated, thesevaral concerns which can severely disrupt attempts to
analyze the data:

Over-clustering: This happens when ESTs from different genes are clustegedtter, and therefore associated with the
same genetic sequence. This often arise as a result of thglprocedure, which falsely place two originally separat
sequences in the same regdchimerism. However, paralogous genes can also be clugstagether due to high sequence
similarity. Using the traditional (TGICL, d2_cluster) gile transitive single linkage clustering methods [141,]1428n
cause all EST from both genes to be assigned to the samerclMstee stringent clustering methods such as the double
linkage of geneDistiller [54] can reduce the amount of figistustered reads, and create more consistent assembties a
consensus sequences [56].

Highly expressed genesin non-normalized cDNA libraries the fraction of the genleattis highly expressed, will be
represented in a high number and lead to large and deeprslustat may accidentally contain EST from more than one
gene. There are several ways to handle highly expressed depending on the purpose of the investigation: (i) Removal
of known house keeping genes: If the sequence of some hoegéngegenes of the organism are known, removing
ESTs that originate from these genes can alleviate the gmudl (ii) Adding annotated gene sequences: If a genetic
sequence of an annotated gene is known, it can be used aslateefopthe ESTSs. (iii) Seeded clustering: Known full-
length transcripts can be used for 'seeded clustering’¢clvhelps to create smaller, better partitioned clustersaandtl
chimeric assemblies [130].

These procedures can alleviate some of the problems, hosenwe clusters of highly expressed genes can still contain
several thousands EST sequences. Producing a consensiegssedrom such a large cluster can be tricky as most
assembler are not able to handle such deep clusters. Seethadds have been created to deal with this problem, such as
the “containment clustering” of TGICL [130], or the alignmifconsensus strategy of geneDistiller [54, 56].

Other minor concerns in EST assembly are overlapping geméisey can be on opposite strand and share a UTR-tail or
have common motifs. This can cause the assembly progransignaSSTs from two different genes to the same cluster
[52], and will complicate analysis of the cluster.

4.4.4 Reliability of high-throughput assemblies and sequee data

Although no major comparison of assemblies generated \iffiérent HTS technologies has been published yet, prelimi-
nary analysis shows that assemblies with 454 and Solex#isartly differ from those obtained with classical sequiegc
reads. In a survey of assemblies ftreptcoccus suisom 454, Solexa and capillary data, 454 sequencing of arjbr
with 5-fold coverage produced 5336 contigs while the Sangsthod, two-fold coverage, resulted in only 1011 contigs.
The length of the largest contig was 5336 for 454 and 1225théocapillary sequencing method. Moreover, using Solexa,
a ten-fold coverage was necessary to produce 8370 contigsavmaximum length of only 1687 [143]. The best results
were seen for hybrid assemblies comprising data from at teasdifferent sequencing technologies. The authors con-
cluded that assembly methods are to be refined to addregsetiéic shortcomings of each method [143]. As mentioned
earlier, the differences are likely to be caused by veryedst error patterns. In the case of the Solexa technology, e
rates are highly position-dependent, variable acroseraifft machines and even across different runs [115]. Inentec
investigation on the quality of Solexa reads, the authaugdica bias in the read coverage: significantly more reads were
found in GC-rich genomic intervals. Despite the manufadigpecifications for the read quality, error rates variechfr
0.3% to 3.8% [144]. Compared to 454 sequences, only fewtinssrand deletions were found [119]. In the future a new
basecalling softwareg.Alta-Cyclic [145], might be able to improve the quality ofI8ra sequences. Additionally, it has
been shown that under idealized conditions it is theorigipassible to assemble bacterial genomes (with 80x c@eera
of 30 nt reads) [146].

4.5 Assembly of contigs - scaffolding

While the assembly of the individual reads into contigs giweme (local) information, the contigs still need to be st in
the context of the whole genome. This is carried in the laasplof an assembly process: scaffolding, which is the psoces

12
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where different (genomic) contigs are organized into eaegdr frameworks (scaffolds or super-contigs). The cerdig
ordered and oriented in a consistent way, so that the sddftald is a true representation of chromosomes, thougte ther
may still be gaps between contigs, which are dealt with in reynds of sequencing (see finishing below).

In the scaffolding stage of an assembly, all the informatisnally come from other sources than the reads themselves.
This information includes read-pair information, STS (Gewnce Tag Sites), and other sources [147].

4.6 Finishing

When an assembly has been completed, specific parts of thmblysusually need to be reexamined, perhaps due to low
quality of the data, low (or no) coverage of the sequences sithder suspicion of misassembly, etc. The reexamination
are usually dealt with in an elaborate process where mangpéction is used to analyze the ambiguous section(s) and
new ways are devised to clarify the particular ambiguities.

Analysis of the assembled contigs can be performed with ébeuof tools. One is Consed [148], which allows navigation
of the assembled contigs and reads, problematic regionbeaearched for with different criteria, and regions can be
tagged for further inspection. Others are Autofinish [18ACcardi [150], and GAP4 [151], all of which has different
strengths and purposes.

4.7 Genome Resequencing

Recent developments in high-throughput sequencing técgies have ignited the scientific community’s imagination
Terms such as the “personal genome* or “1000$ genome* argoopwlar in the media [152, 153]. The growing number
of publicly available reference genomes allows genomegressgcing on a larger scale, as sequencing costs decrease and
throughput increases [154]. However, currently even HTE atlows deep resequencing of a small number of large
individual genomes [155] or of specific parts of the genorhbak been remarked that the full power of high-throughput
sequencers might not be unleashed since no suitable mettheddect for specific genomic subsets are available and
methods for targeted amplification are more likely to beaife [97]. However, recent methods using hybrid techngque
such as microarray-based genomic selection (MGS) andptextexon capture to narrow down the number of sequences
or to focus on specific genomic locations may overcome tlastsbming [98, 97]. Thanks to the contribution of James D.
Watson a first complete personal genome, sequenced usingdS4gublished in 2008 [156]. In this project a set of 106.5
million reads, representing 24.5 billion bases and a depih4sfold, was generated. The mapped reads in combination
with 454 quality values (Q-values) were used to gather a 58t32 million SNPs. Several filters had to be applied to
increase specificity. A read was only included if the BLAT J&lignment (i) was spanning at least 90% of the read
length, (ii) did not have alternate hits, (iii) had less tli@e mismatches, (iv) had less than five indels. Subsequéehdy
remaining 93 million reads were again realigned with PHRAG?bss_match tool. Three additional filter steps using the
quality score, (see supplementary material for [156]),rtte® of the variant to total coverage- (0.2) and the vicinity

to homopolymer runs< 5bp) in order to avoid false positive indels ended this compéidgprocedure. Finally, the
authors were able to discover approximately 500 000 newtipat8NPs. Additionally, approximately 2.6 million reads
of novel sequence and reads with low quality alignments vassembled in 170 000 contigs spanning 48Mb. After a
filter step 110000 contigs spanning 29Mb remained [69]. Tutb@s concluded that those contigs might represent the
25Mb predicted to be absent from the current reference gen@vith costs of about 1 million US$, however, the “1000$
genome* genome still seems to be a distant prospect.

Next-generation HTS has also been applied for the mappitraie$location breakpoints. HTS not only reduces the labor
and time cost of traditional methods in detecting trandiooebreakpointseg.in situ hybridization with fluorescent dye-
labeled bacterial artificial chromosome clones (BAC-FI3biit also greatly improve the resolution so that the digdpt
gene can be identified by PCR cloning. Thus, mapping and semqmgbreakpoints region with Solexa platform has
been used to identify novel candidate genes for mentaldatian [93]. Probability calculations as well as simulago
suggest that current paired-end sequencing technologgdrprovides a high probability of breakpoint detectiod an
good resolution in localizing structural chromosomal tearrangements [125].

13
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5 Overview of assembly methods

Different assemblers use different information in the agdg process. Some only use sequences in fasta format and
the corresponding quality values, while others can assemithout quality values. Additional information on known
sequencesef). genes), clones, clone sizes and the orientation of the rgadgard-reverse) might be helpful in the
assembly process.

An overview of different assemblers is presented in tabkesnid 1b, which summarizes the approach each program
utilizes in assembly.

[Table 1a]
[Table 1b]

5.1 Assemblers

In the following a large selection of different assemblératthave been created over time are presented. An overview
with shorts presentations of the different assemblers mengon the web-paght t p: // genone. ku. dk/ r esour ces/
assenbl y/ met hods. htni .

One of the (relatively) early assemblers is PHRAP [44], \uhgcstill in use, both in itself (for small DNA sequence sgets)
and as a subcomponent of WGS assembigRePS [157], Phusion [50], JAZZ [158], and ATLAS [159]. OtWGS
assemblers that also use some variety of the standard puaglaut-consensus approach are, the Celera assembler [45
CAP3[116], RAMEN [160], PCAP [161], the TIGR assembler [L,&ZTROLL [132], and ARACHNEZ2 [49]. Some new
approaches to assembly have been attempted, among therfb&jieand TRAP [58], which try novel ways to deal with
repetitive sequences by checking the trace and quality fA@semerging approach is to use more explicit graph based
programs, such as Euler [133], Partial ordered alignme®A)H163], Velvet [121], Splicing graphs [55], ASmodeler
[164], and xtract [57], where the last three are used spatifitor ESTs. Other programs that analyze ESTs are TGICL
[165], StackPack [13], PaCE [166], Hidden Markov Model (HM&ampling [167], and geneDistiller [54]. Finally, some
programs are used in the scaffolding stage, where contegpracessed and put in ordeg. GigAssembler [168] and
Bambus [147] (part of the AMOS package [46]).

5.2 Assembler Comparisons

Comparing the different assemblers is not a trivial tasktdiseveral factors. Not to mention the problems of consingct
appropriate benchmark data. First the different assembige a variety of input data, and so comparing an assembler
which uses a lot of the additional information to one whichyamses a fragment of the information is inappropriate.
Another aspect is evaluating the success criteria, the igdal create a single error-free contig of each chromosome,
which means that fewer gaps, longer contigs, and fewersamerdesired. However, different assemblers might dorbette
in one area and worse in another, so weighing the performaincee assembler against another can be difficult. Still
there have been a few attempts to compare assemblers.

In[132], PHRAP, TIGR Assembler, and STROLL were comparedagquence data from the bacteriBorrelia burgdor-
feri. Phusion and ARACHNE were both applied to the assembly oMbease genome [169, 50]. PHRAP has been
compared to CAP3in [116] (on four BAC datasets) and [76] (8T BHata) where the TIGR Assembler was also included.
Furthermore, a short comparison between PHRAP, ArachikeEaler is presented in [60].

Common to these studies is that the individual performaiftiescassemblers depend on the data they are presented with.
PHRAP is generally aggressive in joining reads and creatgs kcontigs, though sometimes at the expense of introgucin
errors. This assembler would be a fairly good choice if thiaskt consisted only of reads with assigned quality values.
However if additional information, such as forward-reetsnstraints, is available other programg.CAP3, STROLL)
would perform better. Another observation is that the panfince of PHRAP degrades when it is applied to some large
data sets. Additionally an updated assembler based on tlee gackage [60], Euler-SR [115], is available. Euler-SR
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which uses a revised version of the Euler package, is lesg spgensive and optimized for short Reads. Alternatives ar
assemblers such as Arachne or Velvet [121].

6 Applying assemblies for other analyzes

There are different possibilities for further processihthe data and thereby for finding interesting and importeatdres
for future investigation, for example searching for SNAsg& Nucleotide Polymorphisms) and alternative spligets,
or comparing genomes with each other.

SNP detectionESTs are the most often used data source for SNP detectioBNRs can be found from shotgun data as
well. SNPs in transcribed sequences can either be synorg/nowamino acid change), or non-synonymous (encoding a
different amino acid). A variety of different computer prags are designed for SNPs analysis. Some find and predict
whether a given site is polymorphieg. Polybayes [170], Polyphred [171] and novoSNP [172]. Othirdo predict
whether a given SNP is potentially harmful or neutegl,Polyphen [173] and SIFT [174].

Massively parallel Sequencinihe new massively parallel sequencing technologies will/jgle a wealth of new infor-
mation. As mentioned above they have already been appliethéosequencing of an individuals genome [156], and
detection of genomic rearrangements [93, 125], and in thuieéinew ways of utilizing their enormous capacity will like
appear, both with respect to the number of clones that algzethand the total amount of sequenced DNA.

Detection of alternative splicingtn eukaryotes, the removal of introns by splicing is a crusiap in gene expression.
For some genes, splicing results in only one single type oNRbut studies have revealed that up to 60% of the human
genes result in two or more mRNA isoforms due to alternafplieisig [36, 175]. One approach to investigate alternative
splicing is through assemblies of ESTs. However, assembfi€STs usually has multiple solutions in the presence of
alternative splicing, which might end in truncated, misssbkled or missing transcripts [175, 176]. Having a complete
genome as a reference can help because it allows compafigm©BST to the corresponding genomic sequence. Some
programs have been created which explicitly try to addresgptroblem of assembling alternative splice variants from
ESTs, among them are Splicing Graph [55] and geneDistiié}. [

Genome Comparison: Furthermore, as different sequencing project complete tekepective genomes and the data
become available, it becomes possible to compare diffeseand similarities between different species on a sequence
basis. This can generate a wealth of new information, ane géw insights into the evolution and biology of living
organisms. Examples of how such a comparative analysiseaeiormed are given in [177, 67, 62].

7 Discussion

As still more genomes are studied and more sophisticategpetanprograms for genome assembly and analysis are
developed, our knowledge of genomics will expand tremeslyouSequencing technologies have already given us a
consensus sequence lidmo sapiensand in the future we can expect that many individual humarogees will be
sequenced , which will add to the steadily growing numbereafagic variations and genetic predisposition to diseagte th
has been revealed in our specie. Furthermore, many modatigrgs and eventually, all species remain to be sequenced,
which will give a better understanding of life and its evabut

For mammalian genomes whole genome shotgun sequencirigehg 10 entail similar costs for producing a finished
sequence as a hierarchical shotgun solution. The hiecalchpproach has a higher initial cost than the whole-genome
approach, owing to the need to create a map of clones (aboof 8 total cost of sequencing) and to identify sequence
overlap between clones. On the other hand, the whole-germpmeach is likely to require much greater work and
expense in the final stage of the assembly, because of tHemialof resolving misassemblies.

New high-throughput sequencing technologies have ragidigrged. However, the sequencing methods as well as the
computational tools have to be further improved, to allonoaplete de novo assembly for large genomes with these
technologies. However, today only little data on the errodels of different massively parallel sequencing techgiel®

is available. These error models are crucial to interprdtaaralyze the sequence data correctly [144]. When it comes to
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de novo assembly, the short read lengths of SOLID and Solethadologies seem to be a momentous disadvantage and
the high number of reads produced might not be able to comapeifer this handicap. However, all manufacturers aim
to increase the read lengths. Currently, a reasonable agipto the assembly of such short sequences could include dat
from low coverage Sanger sequencing. Although hybrid dett@gproaches are cumbersome [115], they have already
been shown to produce useful assemblies [124].

The choice of sequencing strategy should also be influengelebgoal of the project. In some organisms it might be
desirable to quickly generate a few contigs covering keynsan the genome, while in others a broader strategy might
apply. Still other projects combine whole—genome with &iehical shotgun in a hybrid approach trying to utilize the
strengths of each [159].

Other applications of sequencing and assembly are contgtyideing explored. For example, the growing field of
environmental sequencing (or metagenomics) [178, 179, 180 undoubtedly present new challenges to assemblers,
since sequence data will no longer be known to come from dessaurce organism, but from several and often from
a multitude of distinct organisms, with different relatimbundances, different genome structures, repeat comtedt,

so on. A somewhat related field is paleogenomics — is sequgmdifossil DNA. This field has become much more
accessible with the new massively parallel sequencing odsthas the traditional Sanger sequencing is difficult and
technical impractical on fossil DNA samples. The new teghes, however, have made it possible to extract genomic
information from long extinct species, for example the vipalammoth [181].

The assemblers presented in this paper show the greatitivamd ingenuity that has gone into finding better ways of
assembling the DNA puzzle from diverse types of data. Th@wuarstrategies for overcoming the challenges revealed
in assembly are also discussed. Newer assemblers (andadsdqmograms) endeavor to surmount these challenges in
novel ways, and it is likely that computational whole genomssembly will be further refined in the future. Also, it
should be remembered, that a substantial fraction of tlgelgenomes still evades sequencing/assembly with existing
technology [69]. The estimated10% of the human genome which has not been sequenced maywithbat function,

as exemplified by the centromeres and pericentric hetevogdtic regions. Many of the tandem repeats within these
regions have been sequenced at clone scale, but none hawvedmpenced at genome-scale, where their size exceeding
many megabases preclude assembly. Why the remaining >2&8l(esigaps, scattered over the euchromatic part of the
human genome, with sizes ranging from 20 to 100 kb, cannoehaeced/assembled is unknown. It is likely that
this terra incognita will only be sequenced when (if) singlelecule, very long read sequencing technologies have been
developed.
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Figures

Figure 1 — Timeline

Figure 1: Figure showing the major breakthroughs in sequgndhe year of the different milestones is chosen to be the
publication year of the first article that presented the mettSoftware publications are marked in cursive. On the left
the size of GenBank (in deposited basepairs) is shown, WéHength and width of the bars representing the size on a
logarithmic scale.

Figure 2 — Sequencing vector

Figure 2: Figure showing a schematic drawing of a sequenantpr, such as a BAC (Bacterial Artificial Chromosome).
The insert can be a genomic fragment, or an cDNA (for EST sszjng). In both cases sequencing from each end will
produce a read pair that can provide additional informdiomssemblers.

Figure 3 — Sequencing methods

Figure 3: Schematic drawing of the four different sequeg@rocedures. (a) Hierarchical shotgun, where a BAC clone
map (tilling map) covering the genome is first created afteiclvthe BACs are sequenced. (a) Whole Genome Shotgun,
where the genome is randomly split into smaller parts andesaced. () EST sequencing, where mRNA is extracted from
tissue and then sequenced. (d) Massively parallel sequeemdiere short sequence fragments are aligned to a reference
genome.

Figure 4 — Repeat Contig

Figure 4: Schematic drawing of a cluster contain a likelyeap The region on the right is covered by many more reads
than would be expected by chance, and is therefore potigraiatpeat region, which could be masked.

Figure 5 — Assembly pipeline

Figure 5: Figure showing the typical pipeline of a sequeggiroject. Sequenced reads are generated, after which they
are cleaned and assembled. Following the assembly arorotatid analysis can be performed.The grey line show the
pipeline for massively parallel sequencing where the readsnapped to a reference genome, while the full pipeline is
for de novo sequencing ans assembly. Part of the figure igedifom [182]

Figure 6 — Assembly example

Figure 6: Figure showing an examples of an assembled (ESTjgctcluster). The thick line at the top represents
the consensus sequence produced by the applied assemBI&}).([The blowup shows a putative SNP present in the
sequences. The colored stretches mark specific tri-nidésgt ATG’ is green and 'TAA is red, and are drawn to show

the structure of the assembly.

Figure 7 — Graph example
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Figure 7: Figure showing an examples of how a graph is coctstiu Two reads are mapped onto the different k-mer
nodes k = 6 in this example), and edges between the nodes are deterinyribe reads. The presence of a nucleotide

difference ég. sequencing error, SNEfc) between the two reads cause the graph to split up, thusncpasiambiguity
in the sequence.

Fig. 1
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Sanger Sequencing
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1980 —+ Staden Package
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1983 —+ Random Shotgun sequencing
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1994 — Phrap
1995 -+ WAGS assembly of H. Influenzae
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1998 —+ Pyrosequencing
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2001 —+ Draft sequence of the human genome

2004 -~ Finished the human genome (IHGSC)
2005 -+~ Massively parallel sequencing (454)

Aug 2008, 950337916 Sin— 2008 —+ Single Molecule Sequencing (Helicos)
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Tables

Table 1a — Assemblers used primarily for shotgun data.

Assembler Computational Additional Common| Reference
dependencies Information Features
Phusion RPPHRAP PR, BAC,Q P, R, K [50]
JAZZ banded SW, Qr K [158]
malign, PHRAP
RePS BLAST/PHRAP PR R, K [157]
ARACHNE2 | SW Qr, PR K [49]
[183]
GigAssembler| psLayout PR, BAC,EST,@ | PR [168]
Celera BLAST-like PR P [45]
assembler
Euler graph-based PR R [133]
CAP3 banded SW Qr, PR P [116]
GAP4 CAP3, PHRAP Q,PR [151]
or FAKII
RAMEN banded SW Qr R [160]
ATLAS PHRAP, Qr R, K [159]
banded SW
PCAP CAP3, banded SW P, R [161]
Bambus - contigs P [147]
TRAP mod SW Qr R, K [58]
PHRAP banded SW Q [44]
TIGR mod SW Q R [162]
Assembler
STROLL banded SW Q [132]
mira banded SW Qr R [59]
ALLPATHS graph-based PR [146]
SHARCGS contig elongation [184]
Velvet graph-based PR [121]
SSAKE contig elongation [185]

Table 1a: Overview of different assembly programs (inatgdscaffolders), some of the programs have also been used
to assemble EST sequences. The additional informationsti@information which a given assembler can use, besides
read informationPR: Paired Reads informatioBAC : Bacterial artificial Chromosome daf@; quality dataQy : Quality

data and trimming reads without sufficient quality. Commeatfires are features that the assembler shares with other
assemblers?: Process can be run on parallel computBrdiandles repeat& : K-mer approach to find potential overlaps.
The last four programs listed are designed primarily forstead assembly.
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Table 1b: Overview of the programs designed for clusteramglysis and assembly of EST data. See table 1a for abbre-

viations.

Table 1b — “Assemblers” designed for ESTs

Program| Computational Additional | Common| Reference
dependencies$ Information | Features
TGICL | megablast/CAP3 known genes, P [141]
StackPack PHRAP Qr [13]
PaCE Suffix tree R [166]
Splicing graphs graph-based [55]
ASmodeler| Directed acyclic mRNA, EST [164]
graph | protein sequencep
HB-algorithm HB-algorithm EST [186]
geneDistiller megablast Qr [54]
xtract graph-based Qr [57]

35
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Pairwise Sequence alighment

¢ Pairwise sequence alignment methods are used to find the best-matching local or global alignments of two query
sequences.

# Pairwise alignments can only be used between two sequences at a time.

¢ It is used to identify regions of similarity that may indicate functional, structural and/or evolutionary relationships
between two biological sequences (protein or nucleic acid).

A: CAT-TCA-C
I | I I
B:C-TCGCAGC

In global alighment, two sequences to be aligned are assumed to be generally similar over their entire length.

Alignment is carried out from beginning to end of both sequences to find the best possible alignment across the
entire length between the two sequences.

Local alignment, on the other hand, does not assume that the two sequences in question have similarity over the
entire length.

It only finds local regions with the highest level of similarity between the two sequences and aligns these regions
without regard for the alignment of the rest of the sequence regions.

S = CTGTCGCTGCACG
T = TGCCGTG

Global alignment Local alignment
CTGTCG-CTGCACG CTGTCG( A -
-TGC-CG-TG-=--- | ]
Global: Needleman- Local: Smith-Waterman

Wunsch

The three primary methods of producing pairwise alignments are dot-matrix methods, dynamic programming, and
word methods.
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Sequence Alignment (Needleman-Wunsch, Smith-Waterman)

Topics:

1. Needleman-Wunsch (Global Alignment)
2. Maximum Contiguous Subsequence Sum (Not Required For BSc. Biotech)
3. Smith-Waterman (Local Alignment)

Background: Importance of Sequence Alignment

Comparative analysis is the backbone of evolutionary biology. It was phenotypic
variation which allowed Darwin to compose his theory of natural selection. That theory
rests on the fact that transfer of the genetic code from parent to progeny does not exist
without change. It is these changes in genetic sequence which allow for divergence of
species, and thus provide a backdrop for natural selection. Just as comparative analysis
was key for evolutionary biology, sequence alignment is the cornerstone of modern
bioinformatics. Rapid and automated sequence analysis facilitates everything from
functional classification & structural determination of proteins, to studies of genetic
expression and evolution.

1. Needleman-Wunsch (Global Alignment)

Dynamic programming algorithms find the best solution by breaking the original problem
into smaller sub-problems and then solving. The Needleman-Wunsch algorithm is a
dynamic programming algorithm for optimal sequence alignment (Needleman and
Wunsch, 1970). Basically, the concept behind the Needleman-Wunsch algorithm stems
from the observation that any partial sub-path that tends at a point along the true optimal
path must itself be the optimal path leading up to that point. Therefore the optimal path
can be determined by incremental extension of the optimal sub-paths. In a Needleman-
Wunsch alignment, the optimal path must stretch from beginning to end in both
sequences (hence the term ‘global alignment”).

In order to perform a Needleman-Wunsch alignment, a matrix is created which allows us
to compare the two sequences. The score M (1, ) for every cell depends on the three
cells corresponding to either or both sequence having 1 less letter (i.e. cells M (i-1.7),
M(i,j-1) andM(i-1,3-1). Itis calculated as follows:

M(i,J) = MAX(Mi-1,5-1 + S(A:i, Bjy)
Mi-1, y + gap
Mi, -1 + gap)

where gap is the gap penalty and the function S returns the score/penalty for matching the
two corresponding letters. Once we have computed this score for every cell, we must do a
“traceback”, that is to determine the actual set of operations that lead to the score.


rashmiranjan
Typewritten text
(Not Required For BSc. Biotech)
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Because when computing the score of a cell we took a max over three numbers, on the
traceback we go to the location of the highest — going sideways or up corresponds to
gaps, and going along the diagonal corresponds to a match. This algorithm performs
alignments with a time complexity of O(mn) and a space complexity of O(mn).

Example:
Find the best alignment of these two sequences:
ACTGATTCA
ACGCATCA

Using -2 as a gap penalty, -3 as a mismatch penalty, and 2 as the score for a
match.

Solution:
Step 1: Draw the matrix
For 2 sequences (length m and length n) what size scoring matrix is
needed for their alignment? Grid dimensions must be (m+1) x (n+1).
Think of each increment as a division of the sequence members:

ACTGATTCA

0 » M+1

>O0-4>2000>»

n+1
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Step 2: Assign scores

T
-12

C T G A
4

0

A
-2
2

18
14
-10

-16
-12

-14
-10

-10
-6

-8
4

-6
-2

-6

-8
-4

-2

4
5

-3

-2
4

-6
-8

-6
-8
-10
-12

-2

-10
12
-14
-16

Cc
A

Step 3: Trace back

The optimal path is traced beginning from the lower right-hand corner

T
-12

C T G A
4
-8

A
-2
2

-18
-14

-16
-12

-14
-10

-10
-6

-8
4

-6
-2

-2

-2
-4
5

-3

-2
-4

0

-2

4]0
-6
-8

-6
-8
-10
-12

-2

-10
12
-14
-16

A

T
o
A
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Result:
This analysis yielded the following alignment:

ACTG-ATTCA

|| LT
AC-GCAT-CA

The alignment score is equal to the value in the lower right-hand corner of
the matrix (8).

2. From Global to Local Similarity: Maximum Contiguous Subsequence Sum
When aligning two very large sequences, it is often useful to determine the locations of
high similarity regions, even if there is no additional similarity inbetween the sequences.
Now that we know how to calculate the global alignments, how can we find all local
high-scoring hits, or /ocal alignments above a given threshold for two large sequences?

The answer is related to a programming “pearl”, the ‘Maximum Contiguous Subsequence
Sum’ (MSS).

Problem:

Given integers Aj, Ao, ..., An find (and identify the sequence corresponding to)
the maximum value of:

Solution:
Can be solved in time complexity of ‘n’.

mss (A) {
max = 0;
sum = 0;
for (i=1; 1 < n; 1i+1) {
sum = sum + A[i];
if (sum > max)
max = sum;
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}

return max;

Analysis:
When a subsequence occurs which has a negative sum, the subsequence which
will be examined next can begin after the first subsequence (the one that produced
the negative sum). Basically, the entire first subsequence is regarded as not
having a starting point which will generate a positive sum. For example, consider
this set of numbers:

4,6,-2,2,-14,9

Some sums are positive (4, 4+6, 4+6+(-2), 4+6+(-2)+2) but the sum of the first 5
terms (4+6+(-2)+2-14) is negative. Therefore it follows logically that any
sequence starting between the 4 and -14 and ending with the -14 will have a
negative sum.

The maximum contiguous subsequence sum searches exactly for the highest scoring local
area. We now generalize this approach for sequence alignment; the only change is we do
the abovealgorithm in two dimensions!

3. Smith-Waterman (L.ocal Alignment)

Over a decade after the initial publication of the Needleman-Wunsch algorithm, a
modification was made to allow for local alignments (Smith and Waterman, 1981). In
this adaptation, the alignment path does not need to reach the edges of the search graph,
but may begin and end internally. In order to accomplish this, 0 was added as a term in
the score calculation described by Needleman and Wunsch.

Recall that for global alignments the value at any point is:
M(i,3) = MAX(Mi-1,5-1 + S(A;, Bjy)
Mi-1,5 + gap
Mi, 5-1 + gap)

However for local alignments:
M(I,j) = MAX(Mi-1,5-1 + S(Ai, Bs)
Mi-1,5 + gap
Mi,5-1 + gap
0)
The implication of this is that there are no values below zero in a local alignment scoring
matrix, and the reason for the zero is exactly the same as in the MSS problem above.

Example:
Find the best local alignment between these two sequences:
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ATGCATCCCATGAC

TCTATATCCGT

Using -2 as a gap penalty, -3 as a mismatch penalty, and 2 as the score for a

match.

Traceback begins at the highest value (which is also the alignment score).

Solution:

AT GCATZ CZCZCATGASTC
o oo o o0 0 0 0 0 0 0 0 0 0 O

T o(of(2(0(0|0)2|0|0|0|0O]|2]|0]|0|O

0

0

0

0

0

2

1

2

0

4

1

o(o(2(0|10)|0

642|002

1

4120|000} 2

(8)

©

ojojofofz2(o0f0|2|0

o(2(0(0(0|0[4

A

4 0 A
(0}
AN

2

2(o0fo]42]ofo]o0]4

2{0(0(0(26|5]|3

c o(o(0o|j0|2|0|0|4|2|2|0|0|0O]0O]|2

T 0(0f(2(0(0|0|0]|2

A 0|2|0|0|O0O|2|0l0O(0OfO[21010|2]|0

T 0(0(4

A 0|2|0]|0|0

T 0(0(4

C o(o0(21014|10)|0

cC 0o(0(0|0|2|0]|0]|4

G 0|0)|0O

T oj(of(2(0(0(0|12|10]|4]|3]|2|5]|3

Which yields the alignment:

With an alignment score of 8.
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Local alignments are performed everywhere possible along two sequences.

k 4

Local alignments
are performed
evenmwhere, in
every direction

+— | ocal alignment

\<Globa| alignment

When trying to find the best local alignments corresponding to a global alignment, a sub-
matrix is created with the highest positive score for all alignments above a given
threshold. Therefore, the same thing that the MSS was doing on a linear matrix, the
Smith-Waterman alignment does on a rectangular matrix.
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DIFFERENCES:

NEEDLEMAN AND WUNSCH SMITH-WATERMAN

1 | Global alignment Local alignment

2 | Requires alignment scores for a | Requires alignment score for may be
pair of residues to be >=0 positive or negative.

3 | No gap penalty required Requires a gap penalty to work effectively.

4 | Score cannot decrease between | Score cannot increase, decrease or stay
two cells of a pathway level between two cells of a pathway.
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Dot matrix analysis

* A dot matrix is a grid system where the similar nucleotides of two DNA sequences are represented as dots.
* It also called dot plots.

* Itis a pairwise sequence alignment made in the computer.

* The dots appear as colourless dots in the computer screen.

* In dot matrix , nucleotides of one sequence are written from the left to right on the top row and those of
the other sequence are written from the top to bottom on the left side (column) of the matrix.At every
point, where the two nucleotides are the same , a dot in the intersection of row and column becomes a
dark dot. when all these darken dots are connected, it gives a graph called dot plot. the line found in the dot
plot is called recurrence plot. Each dot in the plot represents a matching nucleotide or amino acid.

* Dot matrix method is a qualitative and simple to analyze sequences.however ,it takes much time to analyze
large sequences.

* Dot matrix method is useful for the following studies :

¢ Sequence similarity between two nucleotide sequences or two amino acid sequences.
* Insertion of short stretches in DNA or amino acid sequence.

* Deletion of short stretches from a DNA or amino acid sequence.

* Repeats orinserted repeats in a DNA or amino acid sequence.

Dot matrix analysis: Two identical sequences

* Nucleic Acids Dot Plots

T BlesariMessage G Wetbial H Calende S Rado G Pecple H YelowPager H Dowroad 9 Customce. | ReaPige
| wil Bookmaks A Locaton [bitp /sl cvmbs colortate edu/mokit/dnadotmdex hird

14

|

Copy DNAT -» DNAZ

3T

|

Clear DNAs & Piot

Demo DNA -» DNAY

2

J

Make Plot |

Vandow SlZE'] 9

Mismatch Umut[ 2

| You clicked near base 634 In DNA 1 and base 635 in DNA 2

DNA 1 on honzontal ass = 780 bases
DNA 2 on vertical axis = 780 bases

Chck on plot o get positional data



WAV RBEHERA. | N

Dot matrix analysis: two very different sequences

* Nucleic Acids Dot Plots of genes

 Maxe Pt wman 3
You chchud nnar buse 709 0 DNA 1 and base 1242 n DNAZ

DONA1 on herontal wea = 1348 dases
DNA 2 on verscs aas = 2222 bosen

O A T e
(AR R SO N .
vhat T Tt

Dot matrix analysis: two similar sequences

* Nucleic Acids Dot Plots of genes

¢ y Window Se |9
Yous tackad riear base 356w DNA | and base 302 in DNA 2

ONA 1 on horzontal Xe5 = 1346 bases
ONA 7 on vortcal aes » 1365 hages

L S . v e
\:1 Ve N ey - O ) v . .
. . RSN 2L Y R0 0 % . Rt
o vh & AR tian R s <
LR <SP SRR YN CTIR S A

Chek on plot to get pasitional data
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Word Method or K-tuple method

* |tis used to find an optimal alignment solution,but is more than dynamic programming .

* This method is useful in large-scale database searches to find whether there is significant match available
with the query sequence.

*  Word method is used in the database search tools FASTA and the BLAST family .
* They identify a series of short ,non-overlapping subsequences (words) of the query sequence.
* Then they are matched to candidate database sequences to get result .

* Inthe FASTA method ,the user defines a value kto use as the word length to search the database .it is slower
but more sensitive at lower values of k. they are also perferred for serches involving a very short qurery
sequence .

* The BLAST provides a number of algorithms optimized for particular types of queries ,for distantly related
sequence matches.

* Itis a good alternative to FASTA .However , the results are not very accurate .

¢ Like FASTA ,BLAST uses a word search of length k,but evaluates only the most significant word m,latches
rather than every word match .
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Multiple Sequence Alignment

Introduction

A Multiple Sequence Alignment is an alignment of more than two sequences. We could align several DNA or
protein sequences.

EX=EA

T Tl G ——

=B

R

Lo D D
T bbb

[ o B e o e B T o T 1 B |
AT s s s s s s s s N Y]
L o o S e o e
e
OO0 0O0000000000
Rl S R O SR SR O SR SR O SR SR S
OO0 0O000000000

Some of the most usual uses of the multiple alignments are:

phylogenetic analysis

conserved domains

protein structure comparison and prediction
conserved regions in promoteres

°

The multiple sequence alignment asumes that the sequences are homologous, they descend from a
common ancestor. The algorithms will try to align homologous positions or regions with the same structure or
function.

Seql_18[®T G
seq1 lSTCHETE —> sgq1_zgg —»>

Multiple alignment algorithm

Multiple alignments are computationally much more difficult than pair-wise alignments. It would be ideal to
use an analog of the Smith & Waterman algorithm capable of looking for optimal alignments in the diagonals
of a multidimensional matrix given a scoring schema. This algorithm would had to create a multidimensional
matrix with one dimension for each sequence. The memory and time required for solving the problem would
increase geometrically with the lenght of every sequence. Given the number of sequences usually involved
no algorithm is capable of doing that. Every algorithm available reverts to a heuristic capable of solving the
problem in a much faster time. The drawback is that the result might not be optimal.

Usually the multiple sequence algorithms assume that the sequences are similar in all its length and they
behave like global alignment algorithms. They also assume that thre are not many long insertions and
delections. Thus the algorithms will work for some sequences, but not for others.


https://en.wikipedia.org/wiki/Multiple_sequence_alignment
https://bioinf.comav.upv.es/courses/biotech3/
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These algorithms can deal with sequences that are quite different, but, as in the pair-wise case, when the
sequences are very different they might have problems creating good algorithm. A good algorithm should
align the homologous positions or the positions with the same structure or function.

It we are trying to align two homologous proteins from two species that are phylogenetically very distant we
might align quite easily the more conserved regions, like the conserved domains, but we will have problems
aligning the more different regions. This was also the case in the pair-wise case, but remember that the
multiple alignment algorithms are not guaranteed to give back the best possible alignment.

These algorithms are not design to align sequences that do not cover the whole region, like the reads from a
sequencing project. There are other algorithms to assemble sequencing projects.

Progressive contruction algorithms

In Multiple Sequence Alignment it is quite common that the algorithms use a progressive alignment strategy.
These methods are fast and allow to align thousands of sequences.

Before starting the alignemnt, as in the pair-wise case, we have to decide which is the scoring schema that
we are going to use for the matches, gaps and gap extensions. The aim of the alignment would be to get the
multiple sequence alignment with the highest score possible. In the multiple alignment case we do not have
any practical algorithm that guarantees that it going to get the optimal solution, but we hope that the solution
will be close enough if the sequences comply with the restrictions assumed by the algorithm.

The idea behind the progressive construction algorithm is to build the pair-wise alignments of the more
closely related sequences, that should be easier to build, and to align progressively these alignments once
we have them. To do it we need first to determine which are the closest sequence pairs. One rough and fast
way of determining which are the closest sequence pairs is to align all the possible pairs and look at the
scores of those alignments. The pair-wise alignments with the highest scores should be the ones between
the more similar sequences. So the first step in the algorithm is to create all the pair-wise alignments and to
create a matrix with the scores between the pairs. These matrix will include the similarity relations between
all sequences.

Once we have this matrix we can determine the hierarchical relation between the sequences, which are the
closest pairs and how those pairs are related and so on, by creating a hierarchical clustering, a tree. We can
create these threes by using different fast algorithms like UPGMA or Neighbor joining. These trees are
usually known as guide trees.


https://en.wikipedia.org/wiki/Hierarchical_clustering
https://en.wikipedia.org/wiki/UPGMA
https://en.wikipedia.org/wiki/Neighbor_joining
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1 ACTGGCTATCGTACATCAGCACCTECECATC

2 ACTGGTATCGTACATCAGCACGTGCGCATC

3 ACTGGTATCGTACATCAGCACGTGCGCATC

4 ACTGGTATCGTACATCAGCACGTECECATE

Alinear pareja mas cercana

1 ACTGETATCGATACATCACCA-GTECACATC
3 ACTGECATCGATACATCAGCACGTECOGCATC

LE

BB e

U g e

Alinear siguientes parejas ......

ACTAGTATCGTACATCAGCACGTGCGCATC
ACTAGTAT-GTACARCAGCACGTGCGLATC

ACTGGTATCGATACATCACCA-GTGCACATC
ACTGGCATCGATACATCAGCACGTGCGCATC
ACTAGTATCG-TACATCAGCACGTGCGCATE
ACTAGTAT=G=TACAACAGCACGTGCGCATC

ACTGGTATCCATACATCACCA-GTGCACR-TC
ACTGGCATCGATACATCAGCACGTGCGCA-TC
ACTAGTATCG-TACATCAGCACGTGCGCA-TC
ACTAGTAT=G=TACARCAGCACGTGCGCA=TC
ATTGGTAR-GATACATCATCAC-TGCGCAGTC

Alineamiento progresivo

An example:
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Secuences:

IMPRESIONANTE

INCUESTIONABLE

IMPRESO

Scores:
IMPRESIONANTE X IMPRESO 7/13
IMPRESIONANTE X INCUESTIONABLE 10/14
INCUESTIONABLE X IMPRESO 4/14

Scoring pair-wise matrix:

IMPRESTIONANTE INCUESTIONABLE IMPRESO

IMPRESIONANTE 1 10/14 7/13
INCUESTIONABLE 10/14 1 4/14
IMPRESO 7/13 4/14 1

Guide Tree:

| -——— IMPRESIONANTE
| -———|—-—— INCUESTIONABLE

The first alignment would be: IMPRESIONANTE x INCUESTIONABLE

IMPRES-IONABLE
INCUESTIANABLE

Now we align IMPRESO to the previous alignment.

IMPRES-IONANTE
INCUESTIONABLE
IMIPRILS==0=====

We have no guarantee that the final is the one with the highest score.

The main problem of these progressive alignment algorithms is that the errors introduced at any point in the
process are not revised in the following phases to speed up the process. For instance, if we introduce one
gap in the first pair-wise alignment this gap will be propagated to all the following alingments. If the gap was
correct that is fine, but if it was not optimal it won’t be fixed. These methods are specially prone to fail when
the sequences are very different or phylogenetically distant.

Sequences to align already in the order given by a guide tree:

Seq A GARFIELD THE LAST FAT CAT
Seq B GARFIELD THE FAST CAT

Seq C GARFIELD THE VERY FAST CAT
Seq D THE FAT CAT
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Seq A GARFIELD THE LAST FAT CAT
Seq B GARFIELD THE FAST CAT

Seg A GARFIELD THE LAST FA-T CAT
Seg B GARFIELD THE FAST CA-T
Seq C GARFIELD THE VERY FAST CAT

Seq A GARFIELD THE LAST FA-T CAT
Seq B GARFIELD THE FAST CA-T

Seq C GARFIELD THE VERY FAST CAT
Seq D ——-——--- THE ---- FA-T CAT

Historically the most used of the progressive multiple alignment algorithms was CLUSTALW. Nowadays
CLUSTALW is not one of the recommended algorithms anymore because there are other algorithms that
create better alignments like Clustal Omega or MAFFT. MAFFT was one of the best contenders in a multiple
alignment software comparison.

T-Coffee is another progressive algorithm. T-Coffee tries to solve the errors introduced by the progressive
methods by taking into account the pair-wise alignments. First it creates a library of all the possible pair-wise
alignments plus a multiple alignment using an algorithm similar to the CLUSTALW one. To this library we can
add more alignments based on extra information like the protein structure or the protein domain composition.
Then it creates a progressive alignment, but it takes into accounts all the alignments in the library that relate
to the sequences aligned at that step to avoid errors. The T-Coffe algorithm follows the steps:

1. Create the pair-wise alignments

2. Calculate the similirity matrix

3. Create the guide tree

4. Build the multiple progressive alignment following the tree, but taking into account the information from
the pair-wise alignments.

T-Coffee is usually better than CLUSTALW and performs well even with very different sequences, specially if
we feed it more information, like: domains, structures or secondary structure. T-Coffee is slower than
CLUSTALW and that is one of its main limitations, it can not work with more than few hundred sequences.

lterative algorithms

These methods are similar to the progressive ones, but in each step the previous alignments are
reevaluated. Some of the most popular iterative methods are: Muscle and MAFFT are two popular examples
of these algorithms.

Hidden Markov models

The most advanced algorithms to date are based on Hidden Markov Models and they have improvements in
the guide tree construction, like the sequence embedding, that reduce the computation time.

Clustal Omega is one of these algorithms and can create alignments as accurate of the T-Coffee, but with
many thousands of sequences.


https://en.wikipedia.org/wiki/Clustal
http://www.clustal.org/omega/
http://mafft.cbrc.jp/alignment/software/
http://www.tcoffee.org/
http://drive5.com/muscle/
http://mafft.cbrc.jp/alignment/software/algorithms/algorithms.html
https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/Markov_model
http://almob.biomedcentral.com/articles/10.1186/1748-7188-5-21
http://www.clustal.org/omega/
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Alignment evaluation

Once we have created our Multiple Sequence Alignment we should check that the result is OK. We could
open the multiple alignment in a viewer to assess the quality of the different regions of the aligment or we
could automate this assesment. Usually not all the regions have an alignment of the same quality. The more
conserved regions will be more easily aligned than the more variable ones.

It is quite usual to remove the regions that are not well aligned before doing any further analysis, like a
phylogenetic reconstruction. We can remove those regions manually or we can use an especialized
algorithm like trimAl.

Software for multiple alignments

There are different software packages that implement the described algorithms. These softwares include CLI
and GUI programs as well as web services.

One package usually employed is MEGA. MEGA is a multiplatform software focused on phylogenetic
analyses.

Jalview and STRAP a multiple alignment editor and viewer. Another old software, that has been abandoned
by its developer is BioEdit.

In the EBI web server have some services to run several algorithms like: Clustal Omega, Kalign, MAFFT,
and Muscle.


http://trimal.cgenomics.org/
http://www.megasoftware.net/
http://www.jalview.org/
http://www.bioinformatics.org/strap/
http://www.mbio.ncsu.edu/bioedit/bioedit.html
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ebi.ac.uk/Tools/msa/kalign/
https://www.ebi.ac.uk/Tools/msa/mafft/
https://www.ebi.ac.uk/Tools/msa/muscle/
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Phylogeny and evolution

Speciation

Speciation is the evolutionary process by which reproductively isolated biological populations evolve to
become distinct species. Two populations from the same species that are reproductively isolated, that do not
have gene flow between them, can end up with time creating two new species incapable of having sexual
reproduction between them.

Speciation mechanisms

A population is a group of individuals that live in the same greographical area and are capable of
interbreeding mixing their genetic information.

Individuals will interbreed more usually with other individuals from their same populations than from
individuls from other populations. Selection, genetic drift, mutation and migration will affect in different ways
to different populations and therefore different populations will have different genetic characteristics. Allelic
frequencies will differ between populations.

o0y
q0,3
A/Efecto fundadcﬁ
deriva
P06 p:0.7
q04 0.3
¢ Sin fuerzas evolutivas ¢
se mantiene &l equilibrio
P06 p:07
04 q:0.3
¢ mutacion —- #
P06 p:0.6
q04 0.3
Z:0,1

A species is usually composed by different populations which have different characteristics. The species is
maintained integrated by the genetic flow that goes from one population to another. If the genetic flow is low
the populations will tend to differ with time. Different selective pressures acting in different populations will
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also make them became different. If the isolation between the populations is maintained they will create
races, subpopulations and finally species.

The isolation between different populations can be due to different causes. One common cause is the
geographical isolation. The populations are split because of the geography (mountain ranges or rivers for
example) or by distance (like South and North America). The speciation cause by this reason is called
alopatric.

original
population

reproductive
isolation

selection and drift

CO@

A sympatric speciation happens when the isolation between the species happens despite living in the same
geographical region. These could be different reasons for a sympatric speciation like:

+ Habitat or seasonal isolation. One species can reach the sexual maturation in a different species than
other or might inhabit different ecological niches.

e Sexual or behavioral isolation. Both species have a sexual incompatible behavior.
* Mechanical isolation. The reproductive organs are not compatible any more.

o Postzigotic isolation. The zygote is formed but is not viable due to genetic or other causes. It might also
be possible that the hybrid is viable, but it is sterile.

Microevolutive processes

Microevolution is the change in allele frequencies that occurs over time within a population.

The processes that underlie microevolution are: mutation, selection (natural and artificial), gene flow and
genetic drift.

Mutation

Genetic variability is the pre-requisite for evolution. The other microevolutive processes will act upon the
variability created by the mutation.

The mutations are:

« random and non-directional towards a goal.
¢ They create variation. Mutation is the only process that creates new variation.

Types:

¢ Point mutations, nucleotide substitutions.
¢ Small insertion and deletions
e Structural variants

Causes:
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Genetic drift

Genetic drift is the change in the allelic frequencies due to the random sampling of alleles to create a new
generation. There wouldn’t be any genetic drift in an infinite population.

You can simulate the random drift.

Try simulate what happens when you create smaller and larger populations. Simulate what happens with
different starting allele frequencies.

Characteristics:

« It removes variability
o Itis neutral
¢ Mechanism that controls most of the genetic variation

Selection

Selection is due to the differential reproductive success of different genotypes.

Selection removes variation created by mutation. It could be compared with a sculptor that removes
fragments from a stone to create a statue.

Mutations can be with respect to selection:

o beneficial
o deletereous
e neutral

The fitness is the quantitative representation of the selection, it measures the contribution of an individual to
the genetic pool of the next generation.

It has no sense to think on the fitness without taking into account the environment. One trait could be
beneficial in one environment and deletereous in another.

Selection adapts the species to the environment and improves the fitness overtime.

Species

Variation within and between species

There could be genetic variation within and between species. When the genetic variation is dominated by the
intraspecific variation it is advisable to do genetic population analyses and not phylogeny.

Phylogeny assumes that the variation within species compared with the variation between the species is
negligible.

Species concept

A species can be defined as the group of individuals capable of breeding and have fertile offspring. This
standard definition focuses on the genetic flow because the lack of genetic flow will make populations
differentiate over time creating new species. But there are different problems with this definition:

o The capacity of breeding fertile offspring ranges from impossible to completely compatible in a continuos
variation. Where should we trace the line that split the species.
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« If two groups can potentially breed but they live in different continents do they belong to the same
species?

|t does not account for the amount of morphological, physiological and ecological differences. What
happens if we have two distinct groups that do not breed because of a geographical barrier and that are
ecologically very distinct? Even if they could potentially breed are they different species?

o If the species has asexual reproduction, how does the gene flow definition applies?

« If the species had sexual reproduction but we only have fossils how can we determine if two individuals
belong to the same species?

« If we study a species that has derived from an extant old species when shold we split the two species?

Trees and networks

Phylogenetic analyses assume that species evolve into new species and that there is no gene flow between
those species once they have split. There can be some exceptions to this assumptions:

» \ery close species can have gene flow between those because they can still produce fertile hybrids.
e There is horizontal transfer. Some genes can jump from one species to another without being
transmitted by sexual interbreeding. This is specially the case in bacteria.

When there is gene flow between species the evolution is better represented by a network than by a tree.

These networks a typical of the populations that after they are split they can still have gene flow between
them. In this case we could consider using population genetic analyses instead of phylogenetics.

A clear case of a network is the endosymbiosis of the mitocondria and the chloroplast. In this case the genes
will have bifurcating trees, but the species evolution will be a network.

Introduction to phylogeny

Phylogenetic analyses try to infer the evolutive relationships between species. They try to build the correct
topology, the order of splits in the ancestral species that created the extant species, and the genetic
distances, that are related to the time passed since the splits.

The phylogenetic methods usually assume that the extant species analyzed were created by splits of the
ancestral species in a bifurcating fashion. If this assumption is not met the result of the phylogenetic analysis
might be misleading. For instance, if we are analyzing populations within a species there could be gene flow
due to migration and that won’t be reflected in the tree build by the phylogenetic analysis.

Phylogenetic analyses create the phylogenetic trees using the experimental evidences available. Some
kinds of evidences are:

» Morphological data
o Genotypes
o DNA or protein sequences

Taxonomy vs phylogeny

Taxonomy is the science of defining groups, classifying, on the bases of similarity and shared characteristics.
Phylogenetics is the study of the evolutionary history of the living beings. Both concepts are related, but they
are not the same. In biology, Cladistics, we try to classify the species using their evolutionary history. We
could create the biological groups based on characteristics not related with its history. We could classify
according to morphological or ecological similarities not because of their history. For instance, herpetology is
the study of amphibians and reptiles, despite the fact that cladistics would classify them in distinct groups.
Some methodologies traditionally used in phylogenetics, like UPGMA trees, are also commonly used in
taxonomy, even in non-biological taxonomies.

Nomenclature
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Taxon and clade

A taxon is a group of organisms defined in a taxonomical analysis. The taxa can be families, genera,
species, etc. Examples of taxa are: mammals, reptiles, insects or fishes.

A clade is a branch in a phylogenetic tree. It can be a group of species with their common ancestors.

All clades could be taxa, if somebody name them, but not all taxa can be clades. Only the monophyletic taxa
are clades. For instance, the vertebrates are a taxon and a clade. But the taxa reptiles and fishes are not
clades.

Monophyly, polyphyly and paraphyly

A monophyletic group is a taxon which forms a clade, meaning that it consists of an ancestral species and all
its descendants.

A polyphyletic taxon is comprised by branches that do not originated from a common ancestor. For instance,
worms would be a polyphyletic taxon.

In a paraphyletic taxon all their members originated from a common ancestor, but not all the descendants of
that ancestor are included in the taxon. Reptiles or fishes are examples of paraphyletic taxa.

Trees, dendograms and cladogram

A phylogenetic tree is a representation of the inferred evolutive relationships, the phylogeny, of a group of
clades. If you follow the diagram from one species in the tip to the ancestor species you will follow the
evolutionary history of the species.

Phylogenetic trees depict two kinds of information, the topology, the pattern of the branching, and the length
of the branches. The topology is related with the order in which the species split in the evolutionary history
and the branches with the time or amount of change between the species.

A a phylogram is a phylogenetic tree in which the branch length should be taken into account.

By contrast, in a cladogram only the topology is relevant.

In an ultrametic tree of the branches from the common ancestor to the extant species have the same length.

If all genetic distances were proportional to the time since the split of the species all phylogenetic trees
would be ultrametric, but this is seldom the case. This is known as the molecular clock hypothesis. Usually
some branches evolve at a faster or slower pace. Some possible reasons for these changes are: selection or
genetic drift. For instance, small populations will change faster due to drift and species in new ecological
niches will suffer a stronger selection pressure and will change faster.

Equivalent topologies
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We can create alternative, but equivalent, graphical representations of a tree. We have to be cautious when
judging which trees have different topologies because we can have different representation of the same
underlying tree.

Rooted and unrooted trees

A phylogenetic tree can be represented with or without a root. In a rooted tree the there is a node that
corresponds to the common ancestor of all the leaves of the tree. In this case all nodes represent the most
recent common ancestor of the clade that derived from that ancestor.
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Phylogenetic reconstruction methods do not create rooted trees. We have to determine which is the ancestor
node. We could do it by assuming the molecular clock hypothesis In this case the most distant node of the
extant nodes will be the most ancient one. The problem with this approach is that we can not be sure that the
molecular clock hypothesis is true for all phylogenies.

So the most common way of creating rooted trees is to include some taxon in the phylogenetic
reconstruction that we are sure that is the most distant and unrelated one. For instance, if we would root a
tree of the mammals we could use a crocodile.

Polytomy

A polytomy is a unresolved node in which several branches appear.

The phylogenetic reconstruction methods assume that all splits are in two, so all polytomies would be due to
lacking phylogenetic signal or to lacking reconstruction methods. To solve a polytomy we need evidence that
correspond to mutations that appeared in the period in which the species related to the polytomy spilit.

Phylogenetic inference based on sequences

Phylogenies can be inferred using different kinds of evidence like:

e Morphology

e Molecular markers

» Presence and absence of genes.
o DNA or protein sequences

But the most common approach is to use sequences when they are available.

In any case we need characters that are similar because they have a common ancestor, not the characters
that are similar because they were selected to adapt the organisms to a similar ecosystem niche. For
instance, if we consider dolphins and sharks to be closely related because they share a similar shape we
would be mistaken. The problem lies in the character chosen. We evaluate the phylogenetic relationships
taking into account the similarities in some characters. If those similarities are due to a common ancestor, for
instance we have for limbs like the cats because we have a common ancestors. Those characters that are
similar because they originated from a common ancestor are called homologous characters. The characters
that are similar, but not because they have a common ancestor are said to be analogous.

For morphological characters can be difficult to know if a character is similar between two species because it
is homologous or analogous because selection can create analogous structures in organism that face the
same ecological problems. For the sequences this is seldom the case. Two sequences that are similar are
similar in most of the cases because they are homologous. The molecular function is not so directly tied with
the sequence. Different sequences can have the same function, so it is unlikely that selection creates
molecules with the same sequence, even if it creates sequences with the same function.

When we are using sequences to build a species tree we assume:

o Each sequence is correct and it belongs to the organism that we are studying.
e Sequences are homologous, they evolved from a common ancestor.
o Each position in the multiple sequence alignment is homologous in all sequences.
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¢ All sequences correspond to extant species and no extant species originated another extant species. All
extant species will be leaves in the tree.

o Mutations happened at random

» Different positions evolved independently.

e There is no genetic flow between the different species after their split. Evolutionary history is a tree, not
a network.

The sequences used can have enough phylogentic signal to infer the phylogeny in every detail, but that can
be not true. We have to check using some statistical method which features of the phylogeny are statistically
significant and which are not.

Usually when we interpret a species phylogeny we assume that the sequence variation within species is very
small compared with the variation between species. This won’t be true for populations.

Uses

Phylogenies can be used to study the species evolution or the evolution of genes.
One common use case is to use sequences of extant species to infer their evolutionary history.

Evolutionary history can be studied for the broad taxonomic ranks or within species. We can be interested in
build a tree for all metazooans of just for the HIV viruses.

We can also use phylogenies to study the evolution of genes and their functions in different organims.

Species tree vs gene tree

The phylogenetic history of the species and the genes of those species should be the same in general, but
there might be differences. Sometimes we can find genes that have a different history than the species that
host them.

When we are building a species tree we assume that the sequences used are representative of the species
evolution.

When we are studying very close species it is common to have incomplete lineage sorting.
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Imagine that you have two alleles for one gene in one ancestral species. Those alleles will have differences
between them. If we sequence only one allele from the extant species and this allele is chosen at random in
those species the final tree will depend on the alleles chosen for each species. This case is only relevant in
very close species because if the species are different enough the number of mutations since the split from
the original species will be much larger than the differences between the two original alleles and those
differences will be irrelevant for the phylogenetic reconstruction. This case is, for instance, relevant in the
tree of chimpanzee, gorilla and human. Depending on the region of the genome chosen the gorilla might
appear to be closer to human than the chimpanzee.

Another common phenomenon that differentiates the species and the gene tree is horizontal transfer.
Usually genes move from parents to offspring, but in some cases they can move horizontally from one
species to another. This is common, for instance, within transposable elements. One example is the case of
the mariner element. The transposable element mariner has been transfered between insect and mammal
species and there are insect and mammalian sequence with identities higher than 95%.
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In the figure it is show the location of different subfamilies of the mariner element: Mariner_Tbel, Mariner-
28_sIn, Mariner1_BT and Mariner-N1-CPe. Mariner_Tbel is found in the Tree shrew and in a couple of ant
species.

Horizontal gene transfer is also very common in prokaryotes.


https://en.wikipedia.org/wiki/Horizontal_gene_transfer
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Another case in which there are discrepancies between the species tree and the gene trees is when species
interchange genetic material. This can happen when species are very closely related and they still produce
fertile offspring. Another case happened when the eukariotes evolved from a fusion of an archea and a
bacteria.
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You also have to take into account that when there is genetic interchange between species recombination
might happen and you can end up having sequences that have stretches that have had different evolutionary
histories. Phylogenetic methods assume that there is no recombination.

Nowadays it is common to build thousands of gene trees from many genes of the genome and infer the
species tree from those trees. This is the area of phylogenomics.

Gene families

A gene family is a set of similar genes created by ancestral duplications.
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All genes that originated from the ancestral copy are homologous, but we can further classify them:

» Homologous sequences are orthologous if they are inferred to be descended from the same ancestral
sequence separated by a speciation event

» Homologous sequences are paralogous if they were created by a duplication event within the genome.

o Homologs resulting from horizontal gene transfer between two organisms are termed xenologs.

Multiple alignment as evidence for phylogenetic inference

Phylogenetic trees are usually build from multiple sequence alignments.

We asume that aligned positions for each sequence correspond to homologous positions and the the
differences are due to mutation that occurred along the evolutionary history.

AITGTAT
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The higher the quality of the multiple sequence alignment the better will be our phylogenetic reconstruction.
If we suspect that there are misaligned regions it is better to remove them before doing the phylogenetic

analysis. We can check manually the multiple sequence alignment to remove suspicious regions. In general
the regions that accumulate more mutations will be more difficult to align and more prone to misalignments.

This pruning of misaligned regions can also be done automatically with specialized software like Gblocks or
TrimAl. These programs remove regions according to its level of conservation, number of gaps, etc.

Models of nucleotide substitutions

Sequences accumulate mutations with time, so differences between homologous sequences inform us about
the evolutionary distance and the time since those sequences begun their split. The more different two
sequences are, the more time should have passed since their split, but there are several confounding factors
for this simple assumption.
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Mutations vs observed changes

We could think that counting the number of differences between two sequences we are counting the number
of mutations between them, but that is not the case. The several mutations can occurred at the same
position and we would count just one difference or maybe even none if the mutation reverted the sequence
to the original sequence. This problem has to be corrected if we want to account for the real number of

mutations.
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Transitions vs transversions

A transition is a change of one purine nucleotide by another one: A to G or G to A or a pirimidine nucleotide
by another one: C to G or G to C. So a transition is a change of one nucleotide by another chemically similar.
A transversion is a change of purine by a pirimidine or viceversa.
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Transitions and transversions do not occur with the same frequency, transitions are more likely. Substituting
a ring structure for another single ring structure of the same type is more likely than mutations between
different rings. Also, transitions are less likely to result in amino acid substitutions (due to wobble base pair),
and are therefore more likely to persist as “silent substitutions” So, if we are interested in accounting for the
time since the split of one species it would be better to count transversions ans transitions independently
because they accumulate at a different rate.

Models of nucleotide substitution

The models of nucleotide substitution account for the process in which one sequence is changed into
another. These models account for the relative frequencies of the different possible changes. They correct
for as many confounding factors as possible to account for the true time since the split of the species.

These models usually assume that different positions in the sequence alignment evolved independently. This
is true for sites evolving neutrally and it could be not true for some selective pressures.

These models differ in the assumptions that they made:

o All mutations are equally probable or not.
o All sites evolve at the same rate or not.
 All nucleotides are found at the same frequency or not.

Popular substitutions models

The Jukes and Cantor model is the simplest substitution model. It assumes that all mutations are equally
probable, that all nucleotides are found at the same frequency and that all sites evolve at the same rate. In
this model there is only one parameter, the substitution rate at which the mutations occur.

The kimura model distinguishes between the substitution rate for transitions and transversions. It assumes
that all bases are found at the same frequency and that all sites evolve at the same rate.

There is a generalised time reversible model that allows for different mutation rates between all nucleotides
and different frequencies for the nucleotides.
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There are also models that assume different mutation rates for different positions in the alignment. This
account for sites that are more conserved than others due to selection.

Choosing between models

The best model for our phylogeny depends on the sequences that we are using.

The evolution of different sequences can be best modeled by one substitution model than other. For
instance, if there are sites strongly selected and sites that are neutral it might be better to use a model that
allows for different mutation rates across positions.

There is also another factor to take into account. The phylogenetic signal contained in the sequence
alignment that we are using is limited and the more parameters a model has the more signal we need if we
don’t want to overfit the model. An overfitted model would describe our data by adjusting the noise in it as if it
was the reality.

Thus, the model to use would be the model that best fit our data, but taking into account the amount of
phylogenetic signal to avoid overfitting. So the model will depend on the sequence alignment and it has been
shown that the model choice might influence the result of the phylogeny.

There are different programs to calculate which is the model for our data. They create a rough first tree and
from that they try all the models and check how the fit the data. One of such programs jmodeltest.

Methods of phylogenetic reconstruction

We can divide the methods in:

heuristic methods based on distances
¢ Maximum parsimony methods
Maximum likelihood

o Bayesian

Phylogenetic reconstruction based on distances

Genetic distance

The genetic distance is a measure of the degree of difference between to sequences.

There are different statistical measures to calculate the distance between two sequences. In theory we could
just use the number of differences between sequences divided by the length of the alignment, but as we
have seen we have to account for the number of mutations not for the number of differences. Many sites will
have had several mutations and by counting the number of differences we are underestimating the genetic
distance. So, we have to use a method to estimate the genetic distance that uses a nucleotide substitution
model.

If we have several sequences aligned we can calculate the distances between any pair of them. These will
be the pairwise distances and with them we can calculate a matrix.

Human Chimp rat Mouse
Human 0 0,9 0,5 0,48
Chimp 0 0,51 0,49
rat 0 0,85
Mouse 0

Tree generation from distance matrices

There are several methods to generate trees from a pairwise distance matrix. They are general statistical
methods used in different fields, not just in phylogenetics. They might be used for any problem that involve
creating hierarchical classifications. The most common of these methods in phylogenetics are UPGMA and
Neighbor-joining.


https://en.wikipedia.org/wiki/Overfitting
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https://en.wikipedia.org/wiki/Genetic_distance
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These heuristic methods are very fast. They can be used with huge distance matrices and they do not
depend directly on the sequence length because all they take is the pairwise genetic distance and they do
not consider the alignment per se. They run very fast without much memory.

We can generate a tree from any distance matrix, but not all distance matrices are equally well described by
a tree. Some matrices, for instance, might be better described by networks than by trees.

Once we have generated a tree it is advisable to check how well the tree matches the original distance
matrix. One way of doing that is to calculate a cophenetic correlation index. To do it we calculate a new
distance matrix from the tree and we calculate the original distance matrix with the new matrix generated
from the tree. A high correlation would indicate that the tree is a good representation of the original matrix.

UPGMA

UPGMA is a clustering method based on looking for the most similar pairs. One the most similar pair is
found the distance matrix is recalculated with this pair as an entity.

This method will generate ultrametric trees so it is advisable to use it only if we are sure that the molecular
clock hypothesis is a good match for our data.

Neighbor-joining

Neighbor joining is very commonly used because is fast and it has no restriction regarding the molecular
clock. It will generate non ultrametic trees with branches that span different lengths.

Maximum parsimony

The maximum parsimony approach tries to obtain the tree that requires the least number of changes to
explain the character matrix given, e.g. the multiple sequence alignment. The idea behind it is that the
simplest explanation should be the correct one.
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To chose the most parsimonious tree the method should, in theory, evaluate all possible trees. For each tree
should calculate how many mutations need to account for the given character matrix. After having that
information it should chose the trees with the least number of mutation. It could be one tree or several that
have the same number of mutations.

$5

estémago estébmago

pezufas pezufias

\e

-

In practice it is not possible to evaluate all trees because the number of trees grow very fast with the number
of taxa. Only with few taxa would it be possible to check them all. So the parsimony methods use a heuristic
to chose the most likely trees and to evaluate the number of mutations only on those.

For the purpose of a maximum parsimony analysis not all characters are informative.

A aat tcg ctt cta gga atc tgc cta atc ctg
B 208 00§ ocoo oo coo ocoo Coo ocoo ool
@ a © ° 0 t.a
D o a 608 o008 ooo g t.t € €oo

1 2 3 4 5

Position 1 is not informative for parsimony because it is invariant and it would add zero mutations to any
possible tree. So it won't differentiate between trees.
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Position 2 does change, but only in one sequence. It is not informative for parsimony because it would add
one mutation for any possible tree. These characters are called autapomorhies.

Position 3 is to variable because it changes in all individuals and it will contribute with 3 mutations to any
tree.

Other methods do use these non-informative sites for parsimony and they have an influence in the genetic
distances that they calculate.

Positions 4 and 5 are informative for parsimony because they are shared by some species and not by others
and they would contribute with different numbers of mutations to different trees. These positions are called
synaptomorphies.

The maximum parsimony method was very popular in the past, but nowadays it seldom used because it has
been shown that it has some statistical problems. There are cases in which this method won’t give us the
correct topology. Moreover, the more phylogenetic data that we have the worse it will behave in these cases.
These problems arise, for instance, when we have a tree in which some taxa have evolved faster than other
and the problem is called long branch attraction.

If we try to reconstruct this phylogeny using maximum parsimony it will create a tree in which the taxa B and
C are together in the base of the tree.

Maximum likelihood

Maximum likelihood is not used just for phylogeny, it is a very useful concept with wide application.

likelihood

In common language probability and likelihood are used as synonymous, but they are not in technical
language.

Imagine that we are throwing a coin 10 times. If we assume that there is a probability p of landing heads we
can calculate the probability of observing a particular outcome, like having 5 heads and 5 tails or 6 heads
and 4 tails and so on. So we have a process with some observed outcomes, than we can name as O and
some parameters that influence those outcomes that we can call M (M for model). Thus we can calculate the
probability of the outcome given the parameters is P(O|M).

In real life we usually don’t know the values for the parameters that define M. For instance, in the case of the
coin we do not know the value for the probability of landing heads p. All we know is that we can do some
observations, throwing the coin, and obtain some outcomes O. So we have to estimate M from our
observations O. A natural way of estimating M is to find the parameters that maximize the probability of
having observed O. So, we can define a function that has O as a given and has the parameters of M as
variables. This is called the likelihood function, or just likelihood: L.

We can maximize L and in that way we calculate the parameters of the model that maximize the probability
of having observed our data.

Example with a coin


https://en.wikipedia.org/wiki/Autapomorphy
https://en.wikipedia.org/wiki/Synapomorphy
https://en.wikipedia.org/wiki/Maximum_parsimony_(phylogenetics)#Problems_with_maximum_parsimony_phylogeny_estimation
https://en.wikipedia.org/wiki/Long_branch_attraction
https://en.wikipedia.org/wiki/Likelihood_function
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We have a coin with a probability p of landing heads and 1 - p of landing tails. For a perfect coin p should be
0.5, but we want to check if our coin is perfect and we want to infer p from the observations that we have
done.

We throw the coin n times and we get x heads and (n - x) tails. We want to calculate p from those
observations.

The probability of having observed x heads and (n - x) tails is related to p by the following function:

P(xp, n)=n!/(x!* (n-k)!) * p™x * (1 -p) A(n - x)

We can maximize this function for the variable p and thus we can calculate which value of p gives the
maximum likelihood of observing x. To do it we can derive the function and ask for the derivative to be zero
and to the second derivative to be negative. If we do just that we get:

p =x/n
You can also read the full demonstration.

To this estimation of the value of p we call it maximum likelihood estimation.

Maximum likelihood and phylogeny

We can use the maximum likelihood approach to look for the most likelihood phylogenetic tree. This would
be the tree that makes the data that we have observed more probable.

To do it we need some observation, the multiple alignment. We also have to chose beforehand the some
mutation model that we want to assume.

For each possible tree we will calculate the probability of the data being generated by the different trees and
we will chose the tree that makes the data most probable. For each tree it will also calculate the parameters
of the model that makes the data most probable.

It is not possible to inspect every possible tree because the number of trees grows very fast with the number
of taxa so these programs use heuristics to inspect only the most likely trees.

This method uses the phylogenetic information present in our data in a more efficient way than the distance
based methods and the maximum parsimony method. So given an alignment it might generate a better tree
than the other ones.

The main problem of the method compared with the distance based methods is that it is computationally
more costly. We can use it now for moderately big alignments because the computers are now quite
powerful.

Bayes

Bayesian statistics based in Bayes theorem. The theorem allows us to calculate conditional probabilities, the
probability of an event A given that other event B has happened.

pP(AIB) = p(A) * p(BIA) / p(B)

This theorem is the base of the bayesian inference. We calculate the probability of an hypothesis or model
(M) given some observations (O).

p (model |observations) = p(model) * p(observations|model) / p (observations)
p(M[O) = p(M) * p(OIM) / p(O)

p(observations|model) is the probability that we used in the maximum likelihood approach. It was the
probability of having those observations given the model and the parameters that we had assumed. The
probability that we calculate in the bayesian approach is the probability of the model given the observations.


https://tamino.wordpress.com/2011/01/19/mle/
https://en.wikipedia.org/wiki/Bayesian_statistics
https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Conditional_probability
https://en.wikipedia.org/wiki/Bayesian_inference
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The interpretations of this probability is more straightforward, it is just the probability of the model or
hypothesis given the data that we have observed.

Example with a coin toss

In the movie The Dark Knight Harvey Dent before becoming Batman’s enemy Two-Face picks between
different paths by tossing a coin. It tosses the coin several times in the movie and it always the result is
heads, never tails. The question is: when are we allow to suspect that there is something funny with Dent’s
coin?

We can think of two hypotheses: the coin is fair and has a head and a tail (H&T) or the coin just has just two
heads (2H).

After Dent has tossed the coin for the first time we have 1 observation, one head, and we can calculate the
probability of the coin having a head an a tail or just two heads using Bayes’ theorem.

P(2H|1 observation) = p(2H) * p(l observation|2H) / p(l observation)
P(H&T|1 observation) = p(H&T) * p(l observation|H&T) / p(l observation)

The probabilities of having observed 1 head in 1 toss are easy to calculate for both models:

p(l observation | 2H) = 1
p (1l observation | H&T) = 0.5

p(2H) and p(H&T) are the probabilities of the models without taking into account the observation, the
probabilities of the models prior to the observation, and they are called prior probabilities. These probabilities
can not be calculated from the data available. We have to assume values for the prior probabilities that look
reasonable to us. For instance, in this case we could assume that having a coin with two faces is very weird.
Alternatively we could assume that since we are watching a movie based on a comic in which a character
named two-head appears we might assume that p(2H) is quite high. We could also assume different prior
probabilities and we could check what happens in any case.

Case 1: p(2C) 0.0000000001
Case 2: p(2C) = 0.5

Finally, we have to calculate the probability ob ser observation independently of the models. That means, the
probability of the observation under any model considered being true.

p(l observation) = p(2H) * p(lobservation|2H) + p(H&T) * p(lobservation|H&T)

Given the prior probabilities we can calculate everything
p(2H|lobservation) = p(2H) * p(lobservation|2H) /(p(2H) * p(lobservation|2H) + p (H&T

Case 1 (p(2H)=1le-10): P(2H|lobservation) = 2e-10
Case 2 (p(2H)=0.5): P(2H|lobservation) = 0.6666666666666666

In both cases we have updated the probability of both hypotheses, but both posterior probabilities are very
different. Posterior probabilities depend on our observation and on the prior probabilities.

What would happen if Havery Dent would continue tossing the coin and getting heads all the time? In that
case the posterior probabilities would converge on very close posterior probabilities no matter what prior
probabilities we start with. So, with enough observations posterior probabilities can be independent on the
prior probabilities.

Epistemological implications of bayesian inference

We can think about bayesian inference as a way of learning. Every time we do an observation we update our
prior knowledge (pior probabilities about the models and hypotheses) with the new evidence/observations


https://en.wikipedia.org/wiki/The_Dark_Knight_%28film%29
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and we get new knowledge (new posterior probabilites).

knowledge = prior knowledge + new evidence

Different evidences should update your knowledge in different degrees. Imagine that somebody tells you that
is capable of curing your influenza infection by treating you with a magical sleight of hand. So he does the
trick and you get cured after a couple of days. Would you think that the infection was cured by his magic?
No, because you would had been cured anyway by your own means. Most influenza infections are cured
even if no treatment is given. It would be a very different kind of evidence if you could treat 100 people with
the magic sleight of hand and cured them in a mean time of one day while other 100 people untreated are
cured in a mean time of 3 days. That would be a much stronger evidence because the treatment is doing
something that we do not see in the people that was not treated.

This is reflected in bayesian inference in the power of the evidence. The power of an evidence depends on
the probability of having observed the evidence if the hypothesis is true and on the probability of having
observed the evidence even if the hypothesis is not true.

p(OIM) / p(O)

Imagine that we want to detect the expression of a gene and we design a pair of primers located in the first
exon of a gene. We do an RNA extraction, we retrotranscribe and we do the PCR. We get the in an agarose
gel the band that we were expecting. Could we conclude that the gene is being expressed? No. Why?
Because that band could be due to a contamination of genomic DNA of the RNA. So the band would appear
even if the gene is not expressed. To be sure that the gene is expressed we have to set proper controls in
the experiment. For instance, we could carry out two experiment one treating with DNAase the RNA before
doing the retrotranscription and another treating with RNAase. If in the RNAase case the band disappears
and in the DNAase case the band is still there we might conclude that the expression is real. This evidence
is difficult to explain if the gene is not expressed. To avoid these problems the primers used to detect gene
expression are usually designed in different exons to use the intron in the middle to avoid the expression due
to genomic DNA contamination.

Every time we do a PCR reaction we include a negative control to be sure that our band is not due to a
contamination but to our samples. It is also a good idea to include a positive control to be able to interpret
the case in which we get no band. Has the PCR reaction failed?

A doctor does an inmonulogical tuberculosis detection test to you. The result is positive. Are you infected
with tuberculosis? Probably not. If the analysis is well done they have detected antibodies in you. That
suggests that you have had contact with the bacteria at some point, but not necessary that you are infected
now. This test would be just a preliminar evidence, but to reach a solid conclusion we would have to do other
analyses.

Prior probabilities affect our conclusions and should be taken into account.

You participate in a program to evaluate the prevalence of HIV in the standard population. The doctor
informs you that the test for HIV presence was positive in your case. Are you infected? The doctor explains
to you that the false positive rate of the test is 5%. That means that for every 100 analysis in non-infected
people 5 turn out to be positive. Which is the probability that you are really infected? No, it is not 95% and
you can not calculate that probability unless you know the prevalence of the HIV infection in your population
(the prevalence). This is the base rate. Let’'s assume that in your population 2 out of 100 people are infected.
Imagine that we do 1000 analyses to 1000 different people. How many analyses will be positive and how
many negative?

True positives = 1000 * 2 / 100 = 20 people
False positives = 1000 * (100 - 2) / 100 * 0.05 = 49 people

If we do not have any other evidence and we take into account the base rate (as we should) we have to
conclude that even after being a positive in the HIV detection analysis it is easier not to be infected than to
be infected. This is know as the false positive paradox and it has implications in very different fields like
health or antiterrorist prevention. This is one of the motive why there are no widespread campaigns to detect


https://en.wikipedia.org/wiki/Base_rate
https://en.wikipedia.org/wiki/False_positive_paradox
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some medical conditions in the population at large. The health, physiological and monetary costs of the false
positives should be taken into account. We have a tendency of forgetting about the base rates and prior
probabilities. This is a logical fallacy named as base rate fallacy.

Extraordinary claims

If in our research we reach an extraordinary conclusion, one far fetch result given the prior knowledge we
have to provide also extraordinary evidences to back it up.

“Extraordinary claims require extraordinary evidence.” Carl Sagan

The case of Barry Marshall provides an example of an extraordinary claim back up by extraordinary
evidences. He is a doctor that infected himself with Helicobacter pylori to show that, despite previous
knowledge, this bacterium could case the peptic ulcer. If H. pylori was not capable of causing the ulcer he
would not get peptic ulcer, but he did develop peptic ulcer one week after being infected. After the onset of
the disease we was treated with antibiotics capable of killing H. pylori. After taking them he was cured. This
evidence did also baked up the claim that H. pylori could cause a peptic ulcer despite the previous
knowledge. After that first test clinical tests were set up to check if the peptic ulcer could be cured with
antibiotics and they also backed up the hypothesis. So the conclusion was clear: H. pylori was capable of
causing peptic ulcers. Marshall proposed an extraordinary hypothesis and provided extraordinary evidence
to back it up and he was given the Nobel price for its contribution to medicine.

Prior probabilities criticisms

The main criticism to bayesian inference is directed against the evaluation of the prior probabilities. This
evaluation is somewhat subjective. Two researchers can propose different prior probabilities for the same
hypotheses because the judge different prior evidence in a different way. But trying to ignore the problem by
not using prior probabilities in an explicit way just sweeps the problem under the carpet. The alternative of
not using the previous knowledge is not to use it, to start always to the start of the research. We have to be
aware of the dependence of the scientific inquiry on our previous knowledge. We have to make an effort of
evaluating that previous knowledge as rigorously as possible. Besides, we have to be explicit about why we
have considered some previous studies and not others. It is reasonable that even after this effort differences
of opinion regarding the previous knowledge might remain between different researchers, but at least the
reasons for these disagreements would be public and explicit.

Besides, even if the prior probabilities are not agreed upon we can reach an agreement after taking into
account the new evidences. With time, as new evidences are accumulated and agreed upon the different
prior points of view will converge. To have an efficient research system we have to make an effort of being
aware of our prior knowledge and biases and we have to evaluate the new evidences independently of our
interests and prior ideas. If we ignore the evidence that contradict our hypotheses and use only the ones that
favor us we won’t reach knowledge but opinion.

Bayesian methods in phylogeny

In the case of bayesian phylogenetic inferece given the data that we have observed, usually a set of
sequences, and some a priori probabilities, we calculate the posterior probabilities for all the possible trees
and for all the parameters of the mutations models. The mutation model should be chosen before doing the
analyses.

In this method we should evaluate the posterior probabilities for every parameter of every tree. This is
computationally impossible for almost any phylogenetic problem. The alternative used is to use Markov
chains Monte Carlo (MCMC) methods to sample the parameters and trees. The problem with the MCMC
methods is that this chains tend to get stuck in local minima. To solve it the MCMC Metropolis-coupled
algorithm is used (MCMCMC).

The most common software in bayesian phylogenetics is MrBayes.

This is the phylogenetic method that is more expensive computationally, but it is regarded as the one that
best extracts the phylogenetic information located in a set of observations (usually sequences).


https://en.wikipedia.org/wiki/Base_rate_fallacy
http://en.wikipedia.org/wiki/Bayesian_inference_in_phylogeny
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
http://mrbayes.sourceforge.net/
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Phylogenetic tree statistical validation

A tree is of not much use if we do not evaluate its statistical significance. A phylogenetic algorithm will
always create a phylogenetic tree regardless of the data that we feed it, but that do not imply that the tree is
meaningful. We have to evaluate what nodes of a tree can be believe, according to the evidence that we
have, and which were generated at random.

In the bayesian methods every node of every tree has a posterior probability associated that we can use to
evaluate their confidence, but in the other methods we do not have any direct indication of the reliability of
the nodes.

An ideal way to evaluate the reliability of the tree would be to create different trees using independent
evidences, for instance sequences from different genes. After building one tree for every gene we could
compare which clades are shared by every tree and which are not. The ones shared would be more reliable.
The problem with this method is that required different sets of data (although this problem has been
alleviated in the genomic era).

A way of generating different alternative trees from one dataset is to do boostrapping. We can do
boostraping using any phylogenetic reconstruction method: distance, maximum parsimony and maximum
likelihood. The method consists of generating different multiple sequences alignments by replacing columns
in the original alignment. For each replica some columns are chosen at random to be replaced and they are
replaced by copying other columns. It is a replacement that keeps the number of columns in the alignment
invariant. After creating these new alignments we calculate one tree for each of them using the phylogenetic
method that we prefer. Finally, we count the number of times in which every clade appears in the boostraped
trees and we use that measure as our reliability measure. The clades with high bootstrap values are to be
trusted if the assumptions used to construct the tree are true.

There have been a lot of discussion and no consensus about which would be a good threshold to trust a
node. It is clear that a clade with a 95% support it is more reliable than a clade with a 50% support, but the
intermediate cases are more difficult to evaluate. It is quite common to use 70% as a threshold.

Phylogenetic software

There are different programs to do phylogenies: MEGA, phyml, MrBayes, RAxML and others.


https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29
http://www.megasoftware.net/
http://www.atgc-montpellier.fr/phyml/
http://mrbayes.sourceforge.net/
http://sco.h-its.org/exelixis/software.html
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