WWW.RBEHERA.IN

<u>www.rbehera.in</u>

<u>Basic Local Alignment Search Tool</u> (BLAST)

Why use BLAST?

- BLAST searches for any entry in a selected database that is similar to your query sequence (protein or nucleotide)
- Identifying relatedness with BLAST is the first step to identify possible function of an unknown protein or gene
 - identifying orthologs and paralogs
 - discovering new genes or proteins
 - discovering variants of genes or proteins
 - investigating expressed sequence tags (ESTs)
 - exploring protein structure and function
- Searching for matches in a database with the "needle" or "water" algorithm is not feasible – it is too slow
- BLAST uses a heuristic approach it is not guaranteed to be the optimal answer, but is close to it
- BLAST is available at https://blast.ncbi.nlm.nih.gov
- You can download and install BLAST+ on you personal computer: <u>https://blast.ncbi.nlm.nih.gov/</u>

WWW.RBEHERA.IN

The BLAST webpage

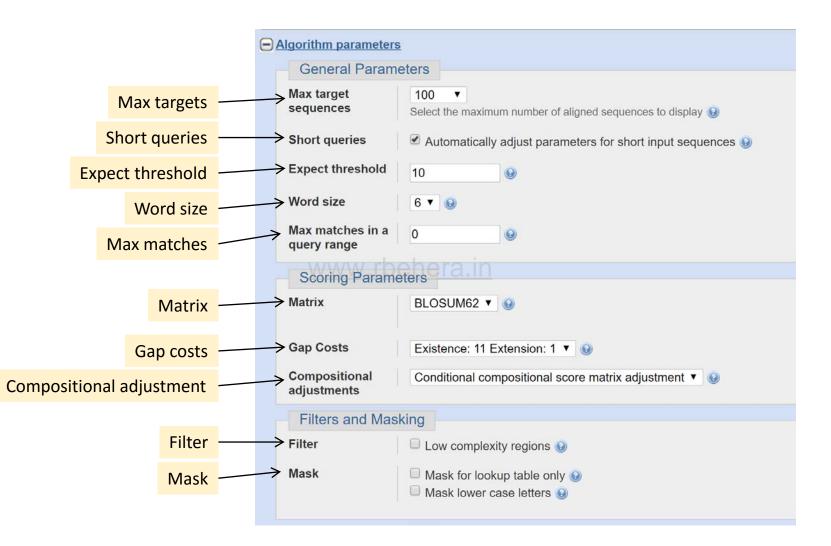
		Standard Protein BLA	ST	
	blastn blastp blastx	tblastn tblastx		
	Enter Query Se	BLASTP programs search protein databases usin	g a protein query. <u>more</u>	<u>Reset page</u> <u>Bookmark</u>
		umber(s), gi(s), or FASTA sequence(s) 🥹	Clear Query subrange 😥	
Query sequence		NVDEVGGEALGRLLVVYPWTQRLFESFGDLFTPDAVMGNPKVKAHGKKVLG SELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN	To	
FastA or accession	Or, upload file	Choose File No file chosen		
number	Job Title	hemoglobin beta [Homo sapiens] Enter a descriptive title for your BLAST search 🕑		
	Choose Search			
Database	and the second sec	Non-redundant protein sequences (nr)	Θ	
	Organism Optional	Enter organism name of id-completions will be suggest Enter organism common name, binomial, or tax id. Only 20 top		
	Exclude Optional	Models (XM/XP) Uncultured/environmental sample		
	Entrez Query Optional	Enter an Entrez query to limit search 🥹	You Tube Create custom databa	<u>ISE</u>
	Program Selec	tion		
Algorithm	Algorithm	 blastp (protein-protein BLAST) PSI-BLAST (Position-Specific Iterated BLAST) PHI-BLAST (Pattern Hit Initiated BLAST) DELTA-BLAST (Domain Enhanced Lookup Time Accordance) Choose a BLAST algorithm () 	elerated BLAST)	
	BLAST	Search database Non-redundant protein sequences	(nr) using Blastp (protein-protein BL	.AST)
Parameters —	Algorithm parame	<u>ters</u>	Restore defau	It search parameters

BLAST protein databases

Choose Searc	h Set	
Database	Non-redundant protein sequences (nr)	. 0
Organism	Non-redundant protein sequences (nr)	
Optional	Reference proteins (refseq_protein)	sted
- prioritai	Model Organisms (landmark)	p taxa will be show
	UniProtKB/Swiss-Prot(swissprot)	
Exclude	Patented protein sequences(pat)	e sequences
Optional	Protein Data Bank proteins(pdb)	
Entrez Query	Metagenomic proteins(env_nr)	You Tube
Optional	Transcriptome Shotgun Assembly proteins (tsa_nr)	

TABLE 4.1 Protein sequence databases that can be searched by BLAST searching at NCBI. PDB, Protein Data Bank. # indicates approximate number of sequences in database. Adapted from BLAST, NCBI, @ http://blast.ncbi.nlm.nih.gov/.

Database	Title	# sequences
nr	All nonredundant GenBank CDS translations + PDB + SwissProt + PIR + PRF excluding environmental samples from WGS projects	65 million
Reference proteins	NCBI protein reference sequences	50 million
UniProtKB/SwissProt	Nonredundant UniProtKB/SwissProt sequences	450,000
Patented protein sequences	Protein sequences derived from the Patent division of GenBank	1.3 million
Protein Data Bank	PDB protein database	77,000
Metagenomic proteins	Proteins from WGS metagenomic projects (env_nr)	6.5 million
Transcriptome	Transcriptome Shotgun Assembly (TSA) sequences	770,000


BLAST nucleotide databases

Database	Title	# sequences
Human Genomic + Transcript	Homo sapiens NCBI Annotation Release 104 RNAs; Homo sapiens all assemblies	55,000
Mouse Genomic + Transcript	Mus musculus NCBI Annotation RNAs; Mus musculus all assemblies	N/A
nr/nt	All GenBank+EMBL+DDBJ+PDB+RefSeq sequences, but excludes EST, STS, GSS, WGS, TSA, patent sequences as well as phase 0, 1, and 2 HTGS sequences	25 million
refseq_rna	NCBI transcript reference sequences	3.5 million
refseq_genomic	NCBI genomic reference sequences	2.7 million
NCBI Genomes	NCBI chromosome sequences	28,000
Expressed sequence tags (EST)	Database of GenBank+EMBL+DDBJ sequences from EST Divisions	75 million
Genomic survey sequences (gss)/\///	Genome survey sequence, includes single-pass genomic data, exon-trapped sequences, and Alu PCR sequences	36 million
High-throughput genomic sequences (HTGS)	Unfinished high-throughput genomic sequences; sequences: phases 0,1 and 2	153,000
Patent sequences	Nucleotide sequences derived from the Patent division of GenBank	21 million
Protein Data Bank	PDB nucleotide database	8000
alu	Human Alu repeat elements	325
Sequence tagged sites (STS)	Database of GenBank+EMBL+DDBJ sequences from STS Divisions	1.3 million
Whole-genome shotgun (wgs)	Whole-genome-shotgun contigs	116 million
Transcriptome Shotgun Assembly (TSA)	Transcriptome shotgun assembly (TSA) sequences	15 million
16S ribosomal RNA sequences (Bacteria and Archaea)	16S ribosomal RNA sequences (bacteria and archaea)	7500

Different BLAST "flavours"

Program	Query	Number of database searches	Database
BLASTP	protein 🗕	1	► protein
Use BLASTP to com	npare a protein	query to a database of proteins.	
BLASTN	DNA -	1	DNA
Use BLASTN to con	npare both strai	nds of a DNA query against a DNA data	base.
BLASTX	DNA W	r beheta.in	▶ protein
		ce into six protein sequences using all si s each of these proteins to a protein data	
TBLASTN	protein 🗕	6	DNA
		y DNA sequence in a database into six p uery against each of those translated pr	•
TBLASTX	DNA ┥		DNA
		ally intensive BLAST algorithm. It transla ntial proteins, then performs 36 protein-p	

Algorithm parameters

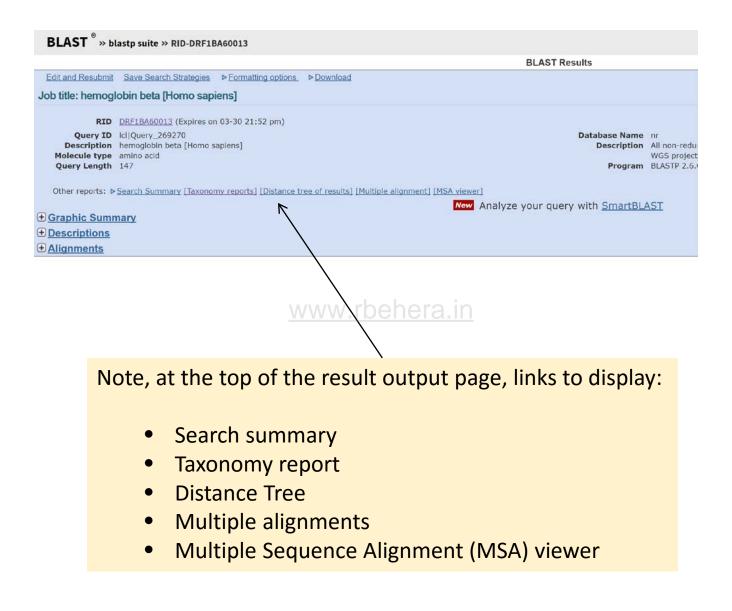
Algorithm parameters

Max targets – maximum number of sequence matches

Short queries – short sequences are more likely to be found, and word size can be adjusted

Expect threshold – the expected number of hits in a random model **Word size** – the length of the seed that initiates the alignment

Max matches – adjust matches to different ranges in query sequence to avoid squelching


Matrix – choose scoring matrix v. rbehera.in

Gap cost – cost the create and extend a gap in the alignment

Compositional adjustment – the scoring matrix is adjusted to compensate for biases in the composition of the aligned sequences

Filter – mask regions of low complexity (simple repeats) that may cause spurious matches

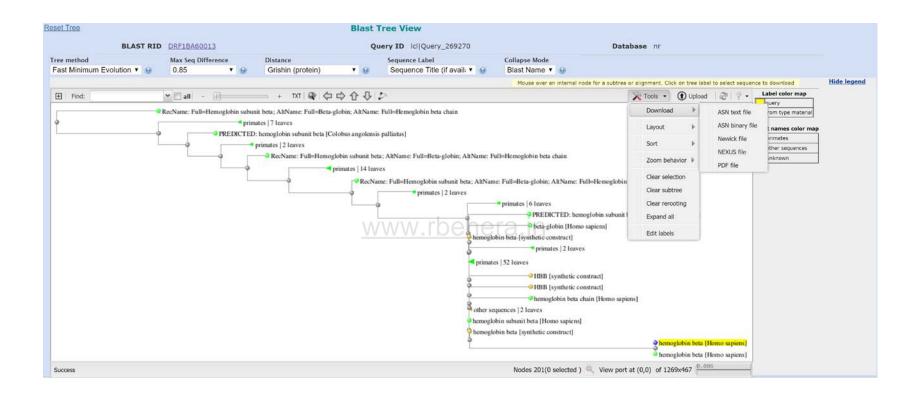
Mask – mask the query when selecting seed sequences, or mask all lowercase letters in the FastA query sequence

Search summary

• Data on the settings and result statistics of the search

	Search Pa	arameters
Program		blastp
Word size		6
Expect value		10
Hitlist size		100
Gapcosts		11,1
Matrix		BLOSUM62
Filter string		F
Genetic Code		1
Window Size		40
Threshold	MAAAAA Kh	21
Composition-based stats	<u>www.ib</u>	

Database					
Posted date Mar 24, 2017 4:20 PM					
Number of letters	43,265,541,427				
Number of sequences	118,106,513				
Entrez query	none				


Karlin-Altschul statistics					
Lambda	0.320522	0.267			
К	0.137501	0.041			
Н	0.427038	0.14			
Alpha	0.7916	1.9			
Alpha_v	4.96466	42.6028			
Sigma		43.6362			

Taxonomy report

• A tally on the number of phyla, families, species etc. that were matched

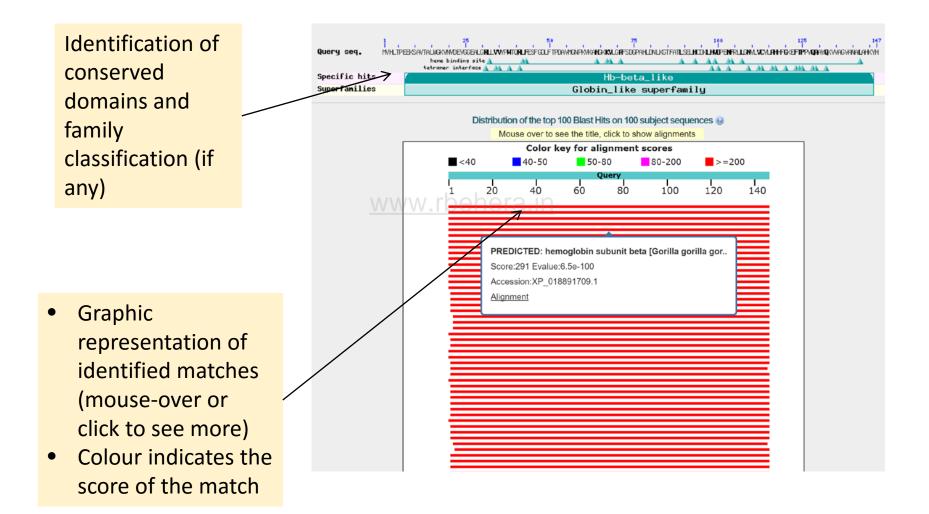
Organism	Blast Name	Score	Number of Hits	Description
root			669	
<u>Similformes</u>	primates		655	
Catarrhini	primates		627	
Hominoidea	primates		<u>595</u>	
<u>Hominidae</u>	primates		594	
<u>Homininae</u>	primates		<u>591</u>	
Homo sapiens	primates	301	<u>584</u>	Homo sapiens hits
Pan troglodytes	primates	293	3	Pan troglodytes hits
Pan paniscus	primates	293	2	Pan paniscus hits
Gorilla gorilla gorilla	primates	291	2	Gorilla gorilla gorilla hits
Pongo abelli	primates	288	hoto in	Pongo abelii hits
Pongo pygmaeus	primates	286		Pongo pygmaeus hits
<u>Hylobates lar</u>	primates	286	1	Hylobates lar hits
Rhinopithecus bieti	primates	285	1	Rhinopithecus bieti hits
Semnopithecus entellus	primates	284	1	Semnopithecus entellus hits
Chlorocebus sabaeus	primates	284	1	Chlorocebus sabaeus hits
Colobus angolensis palliatus	primates	283	1	Colobus angolensis palliatus hits
Colobus polykomos	primates	283	1	Colobus polykomos hits
Rhinopithecus roxellana	primates	283	1	Rhinopithecus roxellana hits
. Macaca fascicularis	primates	281	4	Macaca fascicularis hits
Cercocebus atys	primates	281	2	Cercocebus atys hits
. Macaca nemestrina	primates	281	2	Macaca nemestrina hits
Macaca fuscata fuscata	primates	281	1	Macaca fuscata fuscata hits
Macaca speciosa	primates	281	1	Macaca speciosa hits
Macaca mulatta	primates	281	4	Macaca mulatta hits
Chlorocebus aethiops	primates	281	2	Chlorocebus aethiops hits
Mandrillus leucophaeus	primates	280	2	Mandrillus leucophaeus hits
Macaca arctoides	primates	278	1	Macaca arctoides hits
Papio anubis	primates	278	3	Papio anubis hits
Papio hamadryas	primates	278	1	Papio hamadryas hits
Piliocolobus badius	primates	278	1	Piliocolobus badius hits
Mandrillus sphinx	primates	278	2	Mandrillus sphinx hits
A	orimator	202	2	A 8-1

Distance Tree

- The phylogenetic tree of the multiple alignments are shown
- The data for the tree can also be downloaded in a selection of formats

Multiple alignments

🗹 Query_269270	1	mVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRLFESFGDLFTPDAVMGNPKVKAHGKKVLGAFSDGPAHLD	80
AAR96398	1	mVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRLFESFGDLFTPDAVMGNPKVKAHGKKVLGAFSDGPAHLD	80
AAX29557	1	mVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	80
✓ NP 000509	1	mVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	80
AAX37051	1	mVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	80
XP 018891709	1	mVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	80
AAN84548	1	mVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	80
AAZ39780	1	mVHLTPKEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	80
ACU56984	1	mVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFKSFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	80
AAD19696	1	mVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFLESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	80
AK170610	1	mVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	80
AK170611	1	mVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	80
MICOH_B	1	-VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	79
AK170609	1	mVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPGAVMGNPKVKAHGKKVLGAFSDGLAHLD	80
AAF00489	1	mVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	80
AK170608	1	mVHLTPEEKSAVTALWGKVNVDEVGGEALGRLPVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	80
MOI B	1	-VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKMLGAFSDGLAHLD	79
MIDXU_B	1	-MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFEESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	79
2YRS_B	1	-VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	79
M 1HDB B	1	-VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKTLGAFSDGLAHLD	79
✓ <u>1DXV B</u>	1	-AHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	79
SE29_B	1	HLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	78
SKMF_C	1	-XHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	79
AAL68978	1	mVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	80
MOP B	1	-VHLTPEEKSAVTALWGKVNVDEVGGKALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	79
IK1K B	1	-VHLTPKEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	79
AAN11320	1	mVHLTPVEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	80
XP_002822173	1	mVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	80
✓ 1010 B	1	-MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKLLGAFSDGLAHLD	79
✓ <u>1Y85 B</u>	1	-VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	79
✓ 1YEØ B	1	-MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLAVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	79
CAA23759	1	mVHLTPVEKSAVTAXWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	80
✓ 1YE2 B	1	-MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVFPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	79


• This gives the multiple alignment of all the sequences returned for the query

MSA Viewer

• This allows viewing and some analysis of the multiply aligned sequences that were matched to the query

Seq Start Algrment Seq 1 Algrment Seq 1 Algrment Seq 1 Algrment Seq Comment	Alignment View:	1 - 147 (14	7r sho	wn)													
Number Number<	1 - 14	7 (147r sho	wn)			10											🌣 Tools 🔹 🖓 💡
Number Number<	escriptions	S	peq	Alignment											Seq E	Ind Org	() Zoom In
NAME NAME <th< th=""><th></th><th>S</th><th>tart</th><th>1 10 20</th><th>30</th><th>40</th><th>50</th><th></th><th></th><th></th><th></th><th></th><th></th><th>30</th><th>140 147</th><th></th><th></th></th<>		S	tart	1 10 20	30	40	50							30	140 147		
	uery_269270			MVH ANDERSAM ALMORANN	DEVICOPALGRIAN	VVYPWTORLEE	SEGDLETPDAVN	GNPEVKAHGKEVI	GAFSDGPAHLDNL	GTFATL SELH	DIMENORENEE	TALGINVILVOVIA	HHEGKEFTPPVQA	AYOKVVA	GVANALA HKYB 147		····
	AR96398.1	+ 1		MVHITPEEKSAVTALWGKVNV	DEVGCEALGRLL	VVYPWTORLFE	SEGDLETPDAVE	GNPKVKAHGKKVI	GAFSDGPAHLDNL	GTFA TLSELH	DKLEVDPENFR	LLGNVLVCVL	HHFGKEFTPPVQA	AYOKVVA	GVANALAHKYH 147	Hom	To Zoom To Seque
MUMBER Image: Multiple state Multiple	AX29557.1	+ 1		MVHITPEERSAVTADAGKVNV	DEVGCEALGRLL	VVYPWTORFFE:	SEGDLSTPDAVN	IGNPKVKAHGKKVI	GAFSDGLAHLDNL	GTFATLSELH	DKLHVDPENER	LLGNVLVCVL	HHFGKEFTPPVOA	AYOKVVA	GVANALAHKYB 147		
MUMBER Image: Multiple state Multiple	P_000509.1			MVHLTPEEK SAVTALWGKVNV	DEVGCEALGRLL	VVYPWTORFFE:	SFGDLSTPDAVN	IGNPKVKAHGKKVI	GAFSDGLAHLDNL	GTFA TLSELH	COKLHVDPENFR	LIGNVLVCVL	HHFGKEFTPPVOA	AYOKVVA	GVANALAHKYH 147	Hom	Expand All
0 MMM 0 MMM <td< td=""><td>AX37051.1</td><td></td><td></td><td>MVHLTPEEKSAVTALWGKVNV</td><td>DEVGCEALGRILL</td><td>VVYPWTORFFE!</td><td>SFGDLSTPDAVN</td><td>GNPKVKARGKKVI</td><td>GAFSDGLAHLDNL</td><td></td><td></td><td></td><td></td><td></td><td></td><td>synt</td><td></td></td<>	AX37051.1			MVHLTPEEKSAVTALWGKVNV	DEVGCEALGRILL	VVYPWTORFFE!	SFGDLSTPDAVN	GNPKVKARGKKVI	GAFSDGLAHLDNL							synt	
22399.1 • </td <td></td> <td></td> <td></td> <td>MVHLTPEEKSAVTADWGKVNV</td> <td>DEVGCEALGRLL</td> <td>VVYPWTORFFE:</td> <td>SFGDLSTPDAVE</td> <td>IGNPKVKAHGKKVI</td> <td>GAFSDGLAHLDNL</td> <td>GTFA TL SELH</td> <td>DKLHVDPENFR</td> <td>LLGNVLVCVL</td> <td>HHFGKEFTPPVOA</td> <td></td> <td></td> <td></td> <td>E Coliapse All</td>				MVHLTPEEKSAVTADWGKVNV	DEVGCEALGRLL	VVYPWTORFFE:	SFGDLSTPDAVE	IGNPKVKAHGKKVI	GAFSDGLAHLDNL	GTFA TL SELH	DKLHVDPENFR	LLGNVLVCVL	HHFGKEFTPPVOA				E Coliapse All
USBBB Image: Display: Image: Dis											OKLHVDPENER	LLGNVLVCVL	HHFGKKFTPPVQA	YOUTHIN	147	Man	
0.01096.1 F 1 WHEF 2 3.5.5.V.P.L TEXTURE OF 0.01 // 0.2 METER AVAIL 2012 OF 2.4.5.1.5.V.P.L TEXTURE OF 2.4.5.5.V.P.L TEXTURE OF 2.4.5.5.V.P.L TEXTURE OF 2.4.5.5.V.P.L TEXTURE OF 2.4.5.S.P.L TEXTURE OF 2.4.5.5.V.P.L TEXTURE OF 2.4.5.S.P.L TEXTURE		+ 1													BLOSUM45		Coloring
1000001 +1 •1 •1000000000000000000000000000000000000																	
UNDELLI Image: Imag		+ 1													BLOSUM62		
UNDERLIT Image: Note: Image: Ima		+ 1													RI OCI IMRO		
1/1000.1 + 1 MMM6523454/VAPLEGNAMMACCURVEGTAGE SECONDARY LONGENERATION AND LONGE														.924	BLUSUMOU		etic construct
F0049.1 F1 Windpaces accurate ac															Conservation		> sapiens
1 Multiple 1																	
IOLB I Value 33350 Value 3400 Value 34000 Value 34000 Value 34000 Value 3400 Value 3400 Value 34000 Valu															Column Quality score -	Protein	
NUL_B F1 Minipage (F1) Minipage (F2) Mini		+ 1													chan Differences		
BS:B F 1 Veffequency-Based Difference sepiens DB:B F 1 Veffequency-Based Difference sepiens D:B F 1 Veffequency-Based Difference sepiens D:D F 1 Veffequency-Based Difference sepiens D:D F 1 Veff															Show Differences		
S>.B + 1 Vietname															Frequency-Based Differ	ence	
mx mx <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.6</td><td></td><td></td><td></td></td<>														3.6			
29.8 + 1 Image: state of the stat															Hydropathy Scale		
MP C Image: State																	
Lisopen. + 1 Valence of a second and a second															Membrane preference		
0.000/0.1 t t MVRANZA ANALULA AVAILABLA AVAILABA AVAILABLA AVAILABA AV															Pacmal Amino Acid Cole	ore	
IX.6 I VMARAUXASIANAVASIA VMARAUXASIA															Realition Partition Pacial Con	013	
NU120.1 E I NVM Registration of the state of t															Shapely Amino Acid Col	lors	
102821731 + 1 MURAPERATURAL CONTINUE OF AN OLD ANALY SET OF A PERIOD STEPE ANALY SET OF A PERIOD STEPE AND																	
10.0 + 1 Maintages and support and															Signal sequence		
0.0 0.1 Ministration of the ministratio of the ministratio of the															Cine		
Eq.8 Image: state of the state														1.1.1	Size		
A23799.1 H 1 NVHRFR2 #KAVA/X (GRANDON/G GRANDBAAV4 # 100 # # 5100 AG # 20 AMB BAVA # 2 FOR # 100 # A 1															Marca Alexandro		
E2.8 ★1 Mathematical association of a finite and associatio finite and associatid and association of a finite an															Disable		
SF_B I MHERTPERSIVE/LINEX/IV/OP/C CAMPERANA/I/I FORSE STOOL ST																	
00. B H 1 MHEATDERKEATETALAGKUNVORVC GALAGBAAVVEYEVENTEESTOOLASTPOATMONPKVKAHOKKULAATSOOLABHUNIKOTEATESTOOLASTPOATMONPKVKAHOKKULAATSOOLABHUNIKOOLOSTITESTOOLASTPOATMONPKVKAHOKKULAATSOOLABHUNIKAHOKKULAATSOOLABHUNIKOOLOSTITESTOOLOSTPOATMONPKVKAHOKKULAATSOOLABHUNIKOOLOSTITESTOOLOSTPOATMONPKVKAHOKKULAATSOOLABHUNIKOOLOSTITESTOOLOSTPOATMONPKVKAHOKKULAATSOOLABHUNIKOOLOSTITESTOOLOSTPOATMONPKVKAHOKKULAATSOOLOSTPOATMONPKVKAHOKKULAATSOOLOSTPOATMONPK																	
SRFFE SFGDL STPDAVMGNPKV KA HGK KV LGA F SDGLAH LDN LK GT FA TL SEL HOK LHVD PEN FR LLGNV LV CV PAR HFGK EF TO PV OAA YOK VVA GV ANALAHKYH 147 Homo saplens	10630 1	- (T) (4)		msaviewer/?rid=DRF1BA60013		RFFE	SFGDLSTPDAVE	GNPKVKAHGKKVI	GAF SD GLAH LDN L	GTFA TL SELH	DKLHVDPENFF	INCONVEVOUP	HHFGKEFTOPVOAJ	AYOKVVA	WANAL HKYH147	Hom	o sapiens

• The BLAST output contains several sections of information through which you can scroll

Sequences producing significant alignments: Select: All None Selected:0			Show all columr
🕻 Alignments 📳 Download 👻 GenPept Graphics Distance tree of results Multiple alignment			(
	Query cover	E value	nt Accession
hemoglobin beta [Homo sapiens]	100%	1e-103 100	0% <u>AAR96398.1</u>
hemoglobin beta [synthetic construct]	100%	1e-100 98	% <u>AAX29557.1</u>
hemoglobin subunit beta [Homo sapiens]	100%	2e-100 98	% <u>NP_000509.1</u>
hemoglobin beta [synthetic construct]	100%	2e-100 98	% <u>AAX37051.1</u>
PREDICTED: hemoglobin subunit beta [Gorilla gorilla gorilla]	100%	6e-100 97	% <u>XP_018891709.1</u>
beta globin chain variant [Homo sapiens]	100%	7e-100 97	% <u>AAN84548.1</u>
beta globin [Homo sapiens]	10070	7e-100 97	% <u>AAZ39780.1</u>
beta-globin [Homo sapiens] www.rbehera.	100%	7e-100 97	% <u>ACU56984.1</u>
hemoglobin beta chain [Homo sapiens]	100%	1e-99 97	% <u>AAD19696.1</u>
HBB [synthetic construct]	100%	1e-99 97	% <u>AKI70610.1</u>
HBB [synthetic construct]	100%	1e-99 97	% AKI70611.1

The description section provides a listing of the matches showing

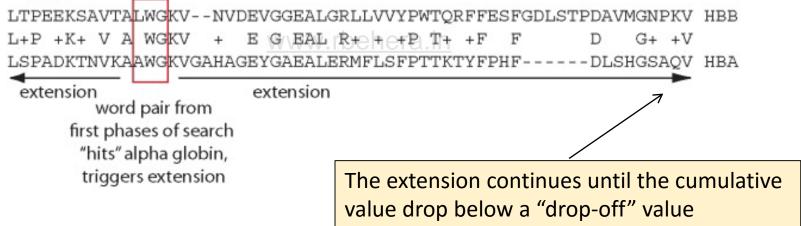
- Coverage of query (percentage of query aligned)
- The E-value of the match
- The percentage identity of the query-match
- The accession number of the match

MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTÖRLFESFGDLFTPDAVMGNPK Sbjct 1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTÖRLFESFGDLFTPDAVMGNPK Sbjct 1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTÖRLFESFGDLFTPDAVMGNPK Guery 61 VKAHGKKVLGAFSDGPAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG 120 VKAHGKKVLGAFSDGPAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG 120 Query 121 KEFTPPVQAAYQKVVAGVANALAHKYH 147 KEFTPPVQAAYQKVVAGVANALAHKYH 147 Sbjct 121 KEFTPPVQAAYQKVVAGVANALAHKYH 147 Bownload <u>GenPept Graphics</u> hemoglobin beta, partial [synthetic construct] IDEMENDIA	<u> </u>	eta [Homo sapiens] \ <u>\R96398.1</u> Length: 147 Nu	umber of Matches: 1		
301 bits(771) 1e-103 Compositional matrix adjust. 147/147(100%) 147/147(100%) 0/147(0%) Query 1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRLFESFGDLFTPDAVMGNPK 60 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRLFESFGDLFTPDAVMGNPK 60 Query 61 VKAHGKKVLGAFSDGPAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG 120 VKAHGKKVLGAFSDGPAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG 120 Query 121 KEFTPPVQAAYQKVVAGVANALAHKYH 147 KEFTPPVQAAYQKVVAGVANALAHKYH 147 Sbjct 121 KEFTPPVQAAYQKVVAGVANALAHKYH 147 Sbjct 121 KEFTPPVQAAYQKVVAGVANALAHKYH 147	Range 1: 1 to 14	17 GenPept Graphics		🔻 Next Match 🔺	Previous Match
Query 1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRLFESFGDLFTPDAVMGNPK 60 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRLFESFGDLFTPDAVMGNPK 60 Sbjct 1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRLFESFGDLFTPDAVMGNPK 60 Query 61 VKAHGKKVLGAFSDGPAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG 120 VKAHGKKVLGAFSDGPAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG 120 Sbjct 61 VKAHGKKVLGAFSDGPAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG 120 Query 121 KEFTPPVQAAYQKVVAGVANALAHKYH 147 Sbjct 121 KEFTPPVQAAYQKVVAGVANALAHKYH 147 Download <u>GenPept Graphics</u> 140 hemoglobin beta, partial [synthetic construct] 100 100					-
VKAHGKKVLGAFSDGPAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG Sbjct 61 VKAHGKKVLGAFSDGPAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG 120 Query 121 KEFTPPVQAAYQKVVAGVANALAHKYH 147 KEFTPPVQAAYQKVVAGVANALAHKYH 147 Sbjct 121 KEFTPPVQAAYQKVVAGVANALAHKYH 147	MV	HLTPEEKSAVTALWGKVNVDEVGG	3EALGRLLVVYPWTQRLFESFGDLF	[PDAVMGNPK	
KEFTPPVQAAYQKVVAGVANALAHKYH Sbjct 121 KEFTPPVQAAYQKVVAGVANALAHKYH 147 Download <u>GenPept Graphics</u> hemoglobin beta, partial [synthetic construct] IDENETATION	VK	AHGKKVLGAFSDGPAHLDNLKGTF	FATLSELHCDKLHVDPENFRLLGNV	VCVLAHHFG	
hemoglobin beta, partial [synthetic construct]	KE	FTPPVQAAYQKVVAGVANALAHKY	/H		
nemegiobili beta, purtar [oynaletto construct]	Download 🗸	GenPept Graphics	www.rboby		
	0		lotraotj	<u>51 a.111</u>	

- The alignment section shows the alignments of the query-matches with
 - Score
 - E-value
 - Identities
- The central sequence shows identical residues, conserved residues ("+" character) and mismatches (a gap)

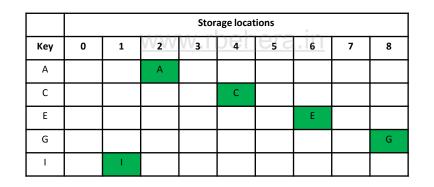
The BLASTP algorithm

Phase 1: Setup: compile a list of words (w=3) above threshold T


- Query sequence: human beta globin NP_000509.1 (includes ...VTALWGKVNVD...). This sequence is read; low complexity or other filtering is applied; a "lookup" table is built.
- · Words derived from query sequence (HBB): VTA TAL ALW LWG WGK GKV KVN VNV NVD

• Generate a list of words matching query (both above and below T). Consider LWG in the query and the scores (derived from a BLOSUM62 matrix) for various words	examples of	LWG IWG MWG VWG FWG	4+11+6=21 2+11+6=19 2+11+6=19 1+11+6=18 0+11+6=17	
• Generate similar lists of words spanning the query (e.g. words for WGW, GWG, WGK).	words >= threshold 12	AWG LWS LWN LWA LYG	0+11+6=17 4+11+0=15 4+11+0=15 4+11+0=15 4+2+6=12	
	examples of words below threshold		4+ 1+6=11 0+11+0=11 -1+11+0=10 -1+11+0=10 2+11-3=10	

The BLASTP algorithm


Phase 2: Scanning and extensions

- Select all the words above threshold T (LWG, IWG, MWG, VWG, FWG, AWG, LWS, LWN, LWA, LYG)
- · Scan the database for entries ("hits") that match the compiled list
- · Create a hash table index with the locations of all the hits for each word
- Perform gap free extensions
- Perform gapped extensions

Hash tables

- It is a table with a key that points to a storage location when a "hashing function" (H) is applied to the key
- Example of a H(K,n):
 - Storage location = K mod n, where K=key and n=size of storage
 - H(K,n) = mod(K,n)
 - A (ASCII=65) mod 9 = 2

• If you have the key, you can quickly find the storage location, and recover its content

The BLASTP algorithm

Phase 3: Traceback

- Calculate locations of insertions, deletions, and matches (for alignments saved in Phase 2)
- Apply composition-based statistics (for BLASTP, TBLASTN)
- Generate gapped alignment
 - For BLASTN, the word size is typically 7, 11, or 15 (EXACT match). Changing word size is like changing threshold of proteins. w=15 gives fewer matches and is faster than w=11 or w=7.

How BLAST calculates the significance of a match

 $E = Kmne^{-\lambda S}$

S = the raw score

E = the expect value the number of highscoring segment pairs (HSPs) expected to occur with a score of at least S

m, n = the length of two sequences

 λ , K = Karlin-Altschul statistics

Some properties of the BLAST equation

 $\mathsf{E} = Kmn \mathrm{e}^{-\lambda \mathsf{S}}$

- The value of **E decreases** exponentially with **increasing S** (higher S values correspond to better alignments). Very **high scores** correspond to very **low E values**
- The E value for aligning a pair of random sequences must be negative! Otherwise, long random alignments would acquire great scores
- Parameter *K* describes the **search space** (database).
- For E=1, one match with a similar score is expected to occur by chance. For a very much larger or smaller database, you would expect E to vary accordingly

Bit scores

- There are two kinds of scores: **raw scores** (calculated from a substitution matrix) and **bit scores** (normalized scores)
- **Bit scores** are comparable between different searches because they are **normalized** to account for the use of different scoring matrices and different database sizes
- S' = bit score = $(\lambda S \ln K) / \ln 2 era.in$
- The E value corresponding to a given bit score is:
- $E = mn2^{-S'}$
- Bit scores allow you to compare results between different database searches, even using different scoring matrices.

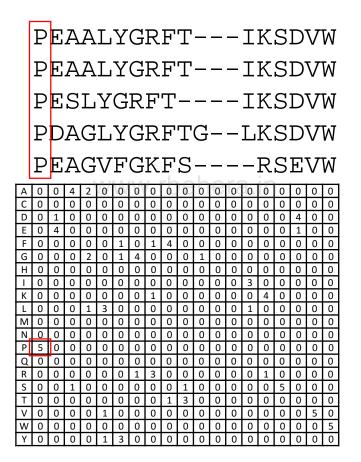
Specialised BLAST "flavours"

- When searching the "nr" dataset with human β -globin, the search does not return myoglobin (first 1000 hits)
- We saw that myoglobin was structurally almost identical to β -globin and clearly homologous
- BLASTp is not sensitive enough
- Thus studying evolutionary relations of a protein may miss distant homologs
- There are a number of adaptations to the classic BLAST algorithm to compensate for this.

PSI-BLAST

<u>Position-specific iterated BLAST</u>. Uses a position-specific scoring matrix (PSSM)

PHI-BLAST


Pattern-hit initiated BLAST

Delta-BLAST

Domain enhanced lookup time accelerated BLAST

PSI-BLAST

- Starts off with a BLASTP search, and then makes a **frequency matrix** of the number of occurrences of each residue at each position of the aligned sequences
- This is also known as a **position specific scoring matrix (PSSM)**

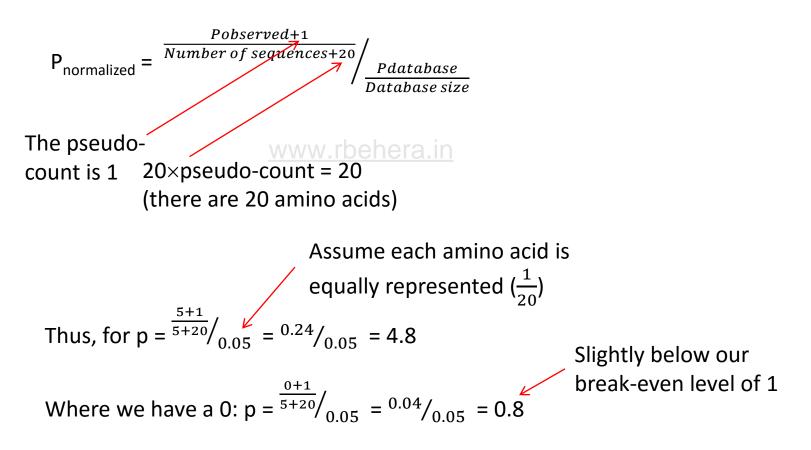
• What about the amino acid composition of the sequences?

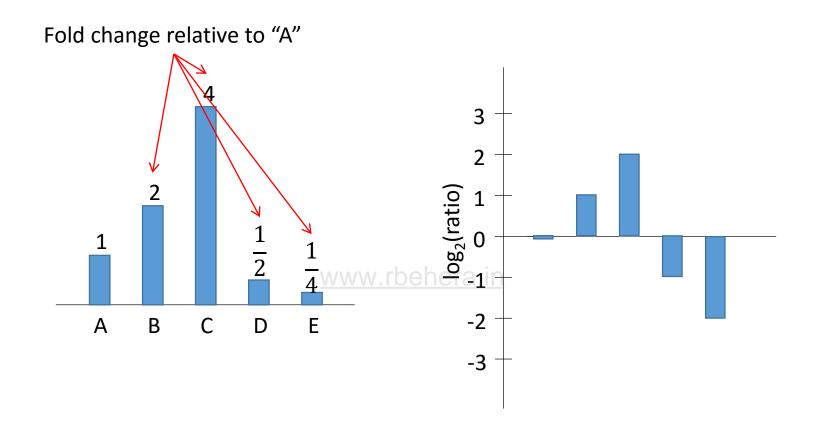
Normalize the PSSM

- Normalize the matrix to the frequency of occurrence of each residue in the population
- Normalization **corrects** for the chance that we will **select** a specific amino acid **randomly** from the database
- You will typically use the **frequency observed** in the **database** that you are searching
- For instance, P was observed 5 times out of 5 at position 1
- Thus, the **raw** frequency of P is 5/5 = 1 (5 occurrences in 5 sequences)
- However, the frequency of P in the database that we are searching is
 1/20 (assuming that all amino acids are equally represented)
- The frequency of P in the database is the **probability** that we will select a P in a **random selection** from the database
- Thus the **normalized frequency** for P at position 1 is:

•
$$\frac{\frac{5}{5}}{\frac{1}{20}} = \frac{1}{0.05} = 20$$

 Thus, in the example above, P occurs 20× more frequently than would be expected from a random distribution

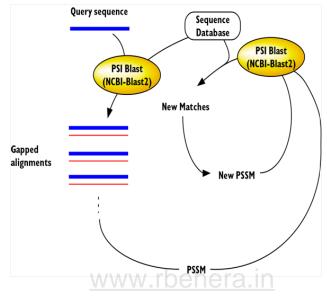

Is "0" for some amino acids in a PSSM reasonable?


- A flipped coin can either be "heads" or "tails"
- Each toss gives an independent chance of $\frac{1}{2}$ that it will be "heads"
- There is a real (but extremely small) chance that you can flip 1000 "heads" in a row, never observing a "tails"
- The tally would then be "heads" = 1000, "tails" = 0
- Although you never observed a "tails" in your experiment, you know that it is **possible** (prior experience)
- Thus, to use your observation "tails" = 0 to indicate that "tails" is never observed, is incorrect
- To adjust the chance of an occurrence, based on previous knowledge, is an established statistical principle known as pseudo-count, or the rule of succession.
- This typically involves adding 1 to the number of "heads", and adding 2 to the number of observations (you have previously observed a "heads" and a "tails")

Normalize matrix incorporating pseudo-counts

The normalized occurrence of P at position 1, normalized for the frequency of P in the database and corrected with a pseudo-count, is

The value of using log₂ space

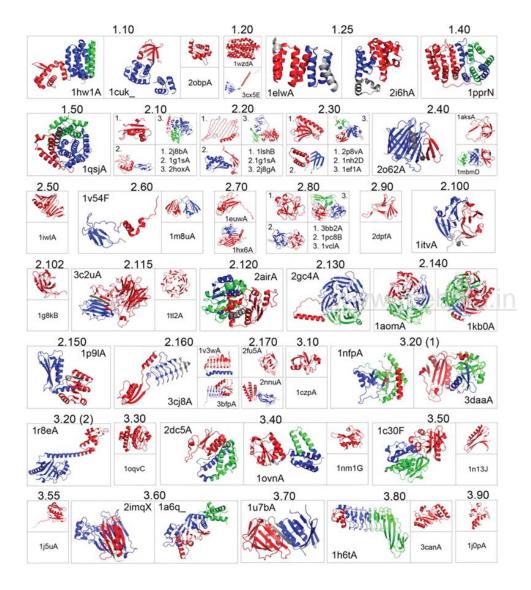

- log₂ space gives **symmetrical distributions** for **identical fold changes**
- It is widely used in **matrices**, microarrays, RNA-seq, proteomics etc.

Sequence logos

PEAALYGRFT---IKSDVW PEAALYGRFT---IKSDVW PESLYGRFTG--IKSDVW PDAGLYGRFTG--LKSDVW PEAGVFGKFS---RSEVW

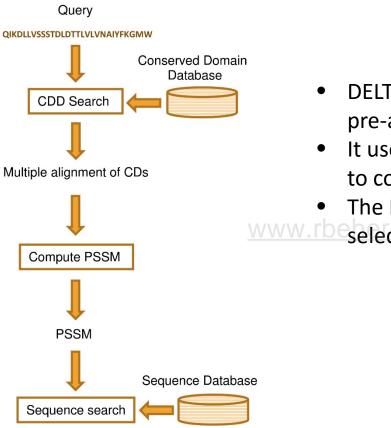
- A sequence logo is a very informative way to display a multiple alignment
- The height of each letter in the stack is proportional to the observed frequency of the letter at that position
- The combined height of a stack corresponds to the "information content" (in bits) of the position
- You can made protein or DNA logos: <u>weblogo.berkeley.edu</u>

PSI-BLAST (Position-specific iterated BLAST)


- A query is searched against the selected database with **BLASTP**
- The returned alignment is used to **construct a PSSM**
- The PSSM is used to **search the database** again
- The **PSSM is adjusted** to reflect the new returned matches
- This iteration (repetition) is typically repeated 5 times
- The E-values are estimated
- More sensitive than BLAST
- Will identify evolutionary distant members of family
- Iteration slows search -- slower than BLAST

PHI-BLAST (Pattern hit initiated BLAST)

- Searches with a pattern against selected database
- PHI-BLAST uses the **Prosite pattern convention**:
 - Any valid residue one-character symbol ACDEFGHIKLMNPQRSTVWY (for DNA: GATC)
 - [] means any one of the characters in brackets e.g., [LFYT] means one occurrence of L or F or Y or T
 - - means nothing (this is a spacer for human readability)
 - x(5) means 5 positions in which any residue is allowed
 - x(2,4) means 2 to 4 positions where any residue is allowed
 - [LIVMF]-G-E-x-[GAS]-x(5,11)-R-[STAQ]-A-x-[LIVMA]-x-[STACV]
- Use when you know protein family has a **signature pattern**: **active site, structural domain**, etc.
- Better chance of eliminating false positives

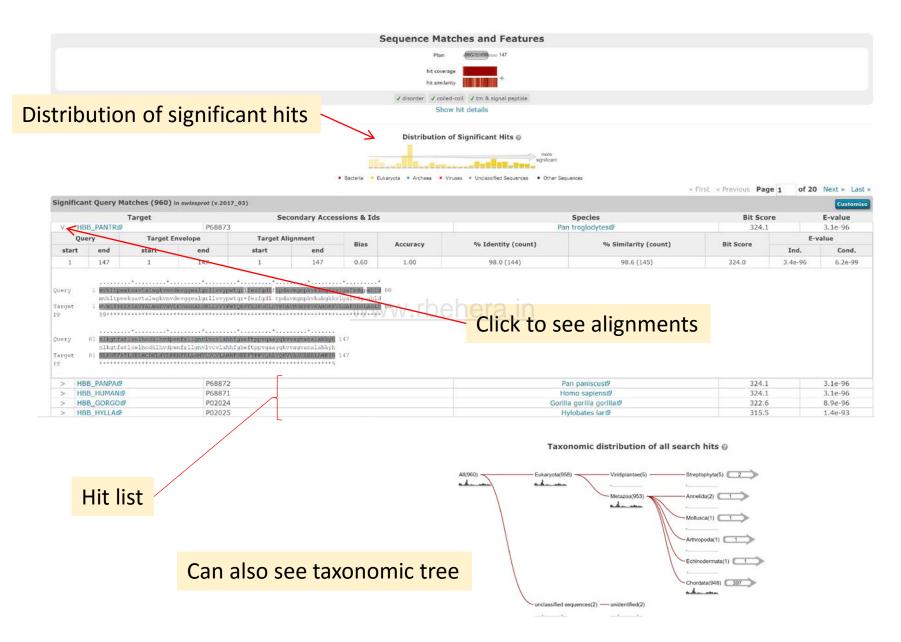

Algorithm	 blastp (protein-protein BLAST) PSI-BLAST (Position-Specific Iterated BLAST) PHI-BLAST (Pattern Hit Initiated BLAST) [LIVMF]-G-E-x-[GAS]-x(5,11)-R-[STAQ]-A-x-[LIVM Enter a PHI pattern @
	DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) Choose a BLAST algorithm

Derive sequence patterns from protein domains

- We have seen that βglobin and myoglobin, although only 20% identical, fold into virtually identical structures
- It therefore seems reasonable to identify all known protein members with a specific domain structure, align the sequences of the domain, and use that alignment to identify possible unknown members
- DELTA-BLAST does this

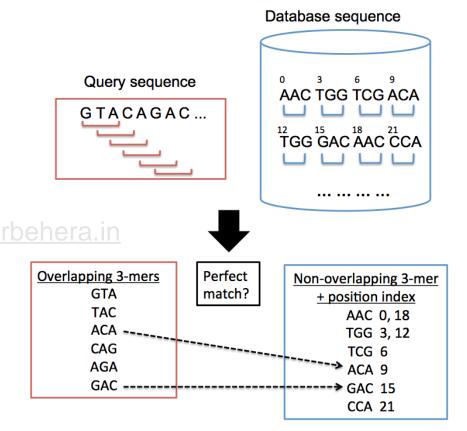
DELTA-BLAST (Domain enhanced lookup time accelerated BLAST)

- DELTA-BLAST searches a database of pre-aligned **conserved domains**
- It uses the matched multiple alignment to compute a **PSSM**
- The PSSM it then used to **search** the selected database


Using HMMER

- HMMs have a **formal probabilistic basis** (unlike PSSMs)
- Use probability theory to guide how all the scoring parameters should be set
- Consistent theory for setting position-specific gap and insertion scores
- Allows **libraries** of hundreds of **profile HMMs** and apply them on a very large scale to whole **genome analysis**
- You can download Linux, Mac OSX and Windows binaries of HMMER and use it on your computer (<u>http://hmmer.org/</u>)
- HMMER is composed of **many programs** to build profiles, align to profiles, search profiles against databases etc.
- build a profile hmm from aligned sequences
- > hmmbuild globins4.hmm tutorial/globins4.sto
- Use the profile hmm to scan a fasta protein database
- > hmmsearch globins4.hmm uniprot sprot.fasta > globins4.out

HMMer as a web service


- You can also access HMMER software as a web service (<u>http://www.ebi.ac.uk/Tools/hmmer/</u>)
- Phmmer protein sequence against protein sequence database This is similar to BLASTp, using the input query and a BLOSUM62 matrix to derive a HMM profile, which is searched against a selected database
- HMMscan protein sequence against profile-HMM database
- **HMMsearch** protein alignment/profile-HMM against protein sequence database
- Jackhmmer iterative search against protein sequence database, similar to PSI-BLAST

Phmmer output

<u>Blast-like alignment tool (BLAT)</u>

- BLAT pre-indexes (constructs a hash table) of the nonoverlapping k-words of the entire database
- It keeps the entire hash table in memory
- It then searched for 1-character offset k-words from the query sequence in the hash table
- **Two** nearby **hits** are **extended** and the sequence fused
- BLAT is very efficient at searching genome-sized sequences
- BLAT is less sensitive than BLAST

commons.wikimedia.org/w/index.php?curid=29016560